Deep Gradient Projection Networks for Pan-sharpening
- URL: http://arxiv.org/abs/2103.04584v1
- Date: Mon, 8 Mar 2021 07:51:58 GMT
- Title: Deep Gradient Projection Networks for Pan-sharpening
- Authors: Shuang Xu and Jiangshe Zhang and Zixiang Zhao and Kai Sun and Junmin
Liu and Chunxia Zhang
- Abstract summary: This paper develops a model-based deep pan-sharpening approach.
By stacking the two blocks, a novel network, called gradient projection based pan-sharpening neural network, is constructed.
The experimental results on different kinds of satellite datasets demonstrate that the new network outperforms state-of-the-art methods both visually and quantitatively.
- Score: 20.929492740317915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pan-sharpening is an important technique for remote sensing imaging systems
to obtain high resolution multispectral images. Recently, deep learning has
become the most popular tool for pan-sharpening. This paper develops a
model-based deep pan-sharpening approach. Specifically, two optimization
problems regularized by the deep prior are formulated, and they are separately
responsible for the generative models for panchromatic images and low
resolution multispectral images. Then, the two problems are solved by a
gradient projection algorithm, and the iterative steps are generalized into two
network blocks. By alternatively stacking the two blocks, a novel network,
called gradient projection based pan-sharpening neural network, is constructed.
The experimental results on different kinds of satellite datasets demonstrate
that the new network outperforms state-of-the-art methods both visually and
quantitatively. The codes are available at https://github.com/xsxjtu/GPPNN.
Related papers
- Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation [4.246657212475299]
We propose a new deep learning method for hyperspectral pansharpening.
It inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme.
The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods.
arXiv Detail & Related papers (2023-11-11T08:53:54Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Deep dual stream residual network with contextual attention for
pansharpening of remote sensing images [2.210012031884757]
We present a novel dual attention-based two-stream network.
It starts with feature extraction using two separate networks for both images, an encoder with attention mechanism to recalibrate the extracted features.
This is followed by fusion of the features forming a compact representation fed into an image reconstruction network to produce a pansharpened image.
arXiv Detail & Related papers (2022-07-25T09:28:11Z) - PIE-Net: Photometric Invariant Edge Guided Network for Intrinsic Image
Decomposition [17.008724191799313]
Intrinsic image decomposition is the process of recovering the image formation components (reflectance and shading) from an image.
In this paper, an end-to-end edge-driven hybrid CNN approach is proposed for intrinsic image decomposition.
arXiv Detail & Related papers (2022-03-30T20:46:15Z) - Proximal PanNet: A Model-Based Deep Network for Pansharpening [11.695233311615498]
We propose a novel deep network for pansharpening by combining the model-based methodology with the deep learning method.
We unfold the iterative algorithm into a deep network, dubbed as Proximal PanNet, by learning the proximal operators using convolutional neural networks.
Experimental results on some benchmark datasets show that our network performs better than other advanced methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2022-02-12T15:49:13Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
In this paper, we advocate that replicating the traditional two stages framework with deep neural networks improves both the interpretability and the accuracy of the results.
Our network operates in two steps: 1) the local computation of the local depth maps with a deep MVS technique, and, 2) the depth maps and images' features fusion to build a single TSDF volume.
In order to improve the matching performance between images acquired from very different viewpoints, we introduce a rotation-invariant 3D convolution kernel called PosedConv.
arXiv Detail & Related papers (2021-08-19T11:33:58Z) - Pan-sharpening via High-pass Modification Convolutional Neural Network [39.295436779920465]
We propose a novel pan-sharpening convolutional neural network based on a high-pass modification block.
The proposed block is designed to learn the high-pass information, leading to enhance spatial information in each band of the multi-spectral-resolution images.
Experiments demonstrate the superior performance of the proposed method compared to the state-of-the-art pan-sharpening methods.
arXiv Detail & Related papers (2021-05-24T23:39:04Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution.
We propose a new image restoration framework that is based on minimizing a loss function that includes a "projected-version" of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN.
arXiv Detail & Related papers (2021-02-04T08:52:46Z) - Recurrent Multi-view Alignment Network for Unsupervised Surface
Registration [79.72086524370819]
Learning non-rigid registration in an end-to-end manner is challenging due to the inherent high degrees of freedom and the lack of labeled training data.
We propose to represent the non-rigid transformation with a point-wise combination of several rigid transformations.
We also introduce a differentiable loss function that measures the 3D shape similarity on the projected multi-view 2D depth images.
arXiv Detail & Related papers (2020-11-24T14:22:42Z) - Learned Multi-View Texture Super-Resolution [76.82725815863711]
We present a super-resolution method capable of creating a high-resolution texture map for a virtual 3D object from a set of lower-resolution images of that object.
Our architecture unifies the concepts of (i) multi-view super-resolution based on the redundancy of overlapping views and (ii) single-view super-resolution based on a learned prior of high-resolution (HR) image structure.
arXiv Detail & Related papers (2020-01-14T13:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.