Automatic Cause Detection of Performance Problems in Web Applications
- URL: http://arxiv.org/abs/2103.04954v1
- Date: Mon, 8 Mar 2021 18:17:40 GMT
- Title: Automatic Cause Detection of Performance Problems in Web Applications
- Authors: Quentin Fournier, Naser Ezzati-Jivan, Daniel Aloise, and Michel R.
Dagenais
- Abstract summary: We propose a method of extracting the internal behavior of web requests and introduce a pipeline that detects performance issues in web requests.
Experiments revealed that this pipeline is indeed able to detect slow web requests and provide additional insights into their true root causes.
- Score: 1.749935196721634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The execution of similar units can be compared by their internal behaviors to
determine the causes of their potential performance issues. For instance, by
examining the internal behaviors of different fast or slow web requests more
closely and by clustering and comparing their internal executions, one can
determine what causes some requests to run slowly or behave in unexpected ways.
In this paper, we propose a method of extracting the internal behavior of web
requests as well as introduce a pipeline that detects performance issues in web
requests and provides insights into their root causes. First, low-level and
fine-grained information regarding each request is gathered by tracing both the
user space and the kernel space. Second, further information is extracted and
fed into an outlier detector. Finally, these outliers are then clustered by
their behavior, and each group is analyzed separately. Experiments revealed
that this pipeline is indeed able to detect slow web requests and provide
additional insights into their true root causes. Notably, we were able to
identify a real PHP cache contention using the proposed approach.
Related papers
- PARIS: A Practical, Adaptive Trace-Fetching and Real-Time Malicious Behavior Detection System [6.068607290592521]
We propose adaptive trace fetching, lightweight, real-time malicious behavior detection system.
Specifically, we monitor malicious behavior with Event Tracing for Windows (ETW) and learn to selectively collect maliciousness-related APIs or call stacks.
As a result, we can monitor a wider range of APIs and detect more intricate attack behavior.
arXiv Detail & Related papers (2024-11-02T14:52:04Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
We propose a novel caching paradigm, that we named approximate-key caching.
While approximate cache hits alleviate DL inference workload and increase the system throughput, they however introduce an approximation error.
We analytically model our caching system performance for classic LRU and ideal caches, we perform a trace-driven evaluation of the expected performance, and we compare the benefits of our proposed approach with the state-of-the-art similarity caching.
arXiv Detail & Related papers (2021-12-13T13:49:11Z) - On Improving Deep Learning Trace Analysis with System Call Arguments [1.3299507495084417]
Kernel traces are sequences of low-level events comprising a name and multiple arguments.
We introduce a general approach to learning a representation of the event names along with their arguments using both embedding and encoding.
arXiv Detail & Related papers (2021-03-11T19:26:34Z) - Revisiting Mahalanobis Distance for Transformer-Based Out-of-Domain
Detection [60.88952532574564]
This paper conducts a thorough comparison of out-of-domain intent detection methods.
We evaluate multiple contextual encoders and methods, proven to be efficient, on three standard datasets for intent classification.
Our main findings show that fine-tuning Transformer-based encoders on in-domain data leads to superior results.
arXiv Detail & Related papers (2021-01-11T09:10:58Z) - DNS Covert Channel Detection via Behavioral Analysis: a Machine Learning
Approach [0.09176056742068815]
We propose an effective covert channel detection method based on the analysis of DNS network data passively extracted from a network monitoring system.
The proposed solution has been evaluated over a 15-day-long experimental session with the injection of traffic that covers the most relevant exfiltration and tunneling attacks.
arXiv Detail & Related papers (2020-10-04T13:28:28Z) - Theory-Inspired Path-Regularized Differential Network Architecture
Search [206.93821077400733]
We study the impact of skip connections to fast network optimization and its competitive advantage over other types of operations in differential architecture search (DARTS)
We propose a theory-inspired path-regularized DARTS that consists of two key modules: (i) a differential group-structured sparse binary gate introduced for each operation to avoid unfair competition among operations, and (ii) a path-depth-wise regularization used to incite search exploration for deep architectures that converge slower than shallow ones.
arXiv Detail & Related papers (2020-06-30T05:28:23Z) - Video Monitoring Queries [16.7214343633499]
We study the problem of interactive declarative query processing on video streams.
We introduce a set of approximate filters to speed up queries that involve objects of specific type.
The filters are able to assess quickly if the query predicates are true to proceed with further analysis of the frame.
arXiv Detail & Related papers (2020-02-24T20:53:35Z) - An Intelligent and Time-Efficient DDoS Identification Framework for
Real-Time Enterprise Networks SAD-F: Spark Based Anomaly Detection Framework [0.5811502603310248]
We will be exploring security analytic techniques for DDoS anomaly detection using different machine learning techniques.
In this paper, we are proposing a novel approach which deals with real traffic as input to the system.
We study and compare the performance factor of our proposed framework on three different testbeds.
arXiv Detail & Related papers (2020-01-21T06:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.