Subjective and Objective Quality Assessment of Mobile Gaming Video
- URL: http://arxiv.org/abs/2103.05099v1
- Date: Wed, 27 Jan 2021 19:48:15 GMT
- Title: Subjective and Objective Quality Assessment of Mobile Gaming Video
- Authors: Shaoguo Wen, Suiyi Ling, Junle Wang, Ximing Chen, Lizhi Fang, Yanqing
Jing, Patrick Le Callet
- Abstract summary: This study presents a brand new Tencent Gaming Video dataset containing 1293 mobile gaming sequences encoded with three different codecs.
We propose an objective quality framework, namely Efficient hard-RAnk Quality Estimator (ERAQUE), that is equipped with a novel hard pairwise ranking loss.
Extensive experiments demonstrate the efficiency and robustness of our model.
- Score: 28.809404637914117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, with the vigorous expansion and development of gaming video
streaming techniques and services, the expectation of users, especially the
mobile phone users, for higher quality of experience is also growing swiftly.
As most of the existing research focuses on traditional video streaming, there
is a clear lack of both subjective study and objective quality models that are
tailored for quality assessment of mobile gaming content. To this end, in this
study, we first present a brand new Tencent Gaming Video dataset containing
1293 mobile gaming sequences encoded with three different codecs. Second, we
propose an objective quality framework, namely Efficient hard-RAnk Quality
Estimator (ERAQUE), that is equipped with (1) a novel hard pairwise ranking
loss, which forces the model to put more emphasis on differentiating similar
pairs; (2) an adapted model distillation strategy, which could be utilized to
compress the proposed model efficiently without causing significant performance
drop. Extensive experiments demonstrate the efficiency and robustness of our
model.
Related papers
- Enhancing Blind Video Quality Assessment with Rich Quality-aware Features [79.18772373737724]
We present a simple but effective method to enhance blind video quality assessment (BVQA) models for social media videos.
We explore rich quality-aware features from pre-trained blind image quality assessment (BIQA) and BVQA models as auxiliary features.
Experimental results demonstrate that the proposed model achieves the best performance on three public social media VQA datasets.
arXiv Detail & Related papers (2024-05-14T16:32:11Z) - VideoCrafter2: Overcoming Data Limitations for High-Quality Video
Diffusion Models [76.85329896854189]
We investigate the feasibility of leveraging low-quality videos and synthesized high-quality images to obtain a high-quality video model.
We shift the distribution to higher quality without motion degradation by finetuning spatial modules with high-quality images, resulting in a generic high-quality video model.
arXiv Detail & Related papers (2024-01-17T08:30:32Z) - EvalCrafter: Benchmarking and Evaluating Large Video Generation Models [70.19437817951673]
We argue that it is hard to judge the large conditional generative models from the simple metrics since these models are often trained on very large datasets with multi-aspect abilities.
Our approach involves generating a diverse and comprehensive list of 700 prompts for text-to-video generation.
Then, we evaluate the state-of-the-art video generative models on our carefully designed benchmark, in terms of visual qualities, content qualities, motion qualities, and text-video alignment with 17 well-selected objective metrics.
arXiv Detail & Related papers (2023-10-17T17:50:46Z) - LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion
Models [133.088893990272]
We learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I) model as a basis.
We propose LaVie, an integrated video generation framework that operates on cascaded video latent diffusion models.
arXiv Detail & Related papers (2023-09-26T17:52:03Z) - SportsSloMo: A New Benchmark and Baselines for Human-centric Video Frame
Interpolation [11.198172694893927]
SportsSloMo is a benchmark consisting of more than 130K video clips and 1M video frames of high-resolution ($geq$720p) slow-motion sports videos crawled from YouTube.
We re-train several state-of-the-art methods on our benchmark, and the results show a decrease in their accuracy compared to other datasets.
We introduce two loss terms considering the human-aware priors, where we add auxiliary supervision to panoptic segmentation and human keypoints detection.
arXiv Detail & Related papers (2023-08-31T17:23:50Z) - Study of Subjective and Objective Quality Assessment of Mobile Cloud
Gaming Videos [34.219234345158235]
We present the outcomes of a recent large-scale subjective study of Mobile Cloud Gaming Video Quality Assessment (MCG-VQA) on a diverse set of gaming videos.
We created a new dataset, named the LIVE-Meta Mobile Cloud Gaming (LIVE-Meta-MCG) video quality database, composed of 600 landscape and portrait gaming videos.
arXiv Detail & Related papers (2023-05-26T21:08:17Z) - RAPIQUE: Rapid and Accurate Video Quality Prediction of User Generated
Content [44.03188436272383]
We introduce an effective and efficient video quality model for content, which we dub the Rapid and Accurate Video Quality Evaluator (RAPIQUE)
RAPIQUE combines and leverages the advantages of both quality-aware scene statistics features and semantics-aware deep convolutional features.
Our experimental results on recent large-scale video quality databases show that RAPIQUE delivers top performances on all the datasets at a considerably lower computational expense.
arXiv Detail & Related papers (2021-01-26T17:23:46Z) - Study on the Assessment of the Quality of Experience of Streaming Video [117.44028458220427]
In this paper, the influence of various objective factors on the subjective estimation of the QoE of streaming video is studied.
The paper presents standard and handcrafted features, shows their correlation and p-Value of significance.
We take SQoE-III database, so far the largest and most realistic of its kind.
arXiv Detail & Related papers (2020-12-08T18:46:09Z) - UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated
Content [59.13821614689478]
Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of content are unpredictable, complicated, and often commingled.
Here we contribute to advancing the problem by conducting a comprehensive evaluation of leading VQA models.
By employing a feature selection strategy on top of leading VQA model features, we are able to extract 60 of the 763 statistical features used by the leading models.
Our experimental results show that VIDEVAL achieves state-of-theart performance at considerably lower computational cost than other leading models.
arXiv Detail & Related papers (2020-05-29T00:39:20Z) - Towards Deep Learning Methods for Quality Assessment of
Computer-Generated Imagery [2.580765958706854]
In contrast to traditional video content, gaming content has special characteristics such as extremely high motion for some games.
In this paper, we outline our plan to build a deep learningbased quality metric for video gaming quality assessment.
arXiv Detail & Related papers (2020-05-02T14:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.