Model Complexity of Deep Learning: A Survey
- URL: http://arxiv.org/abs/2103.05127v1
- Date: Mon, 8 Mar 2021 22:39:32 GMT
- Title: Model Complexity of Deep Learning: A Survey
- Authors: Xia Hu, Lingyang Chu, Jian Pei, Weiqing Liu and Jiang Bian
- Abstract summary: We conduct a systematic overview of the latest studies on model complexity in deep learning.
We review the existing studies on those two categories along four important factors, including model framework, model size, optimization process and data complexity.
- Score: 79.20117679251766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model complexity is a fundamental problem in deep learning. In this paper we
conduct a systematic overview of the latest studies on model complexity in deep
learning. Model complexity of deep learning can be categorized into expressive
capacity and effective model complexity. We review the existing studies on
those two categories along four important factors, including model framework,
model size, optimization process and data complexity. We also discuss the
applications of deep learning model complexity including understanding model
generalization capability, model optimization, and model selection and design.
We conclude by proposing several interesting future directions.
Related papers
- Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - A Survey on State-of-the-art Deep Learning Applications and Challenges [0.0]
Building a deep learning model is challenging due to the algorithm's complexity and the dynamic nature of real-world problems.
This study aims to comprehensively review the state-of-the-art deep learning models in computer vision, natural language processing, time series analysis and pervasive computing.
arXiv Detail & Related papers (2024-03-26T10:10:53Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Demystifying Deep Learning in Predictive Spatio-Temporal Analytics: An
Information-Theoretic Framework [20.28063653485698]
We provide a comprehensive framework for deep learning model design and information-theoretic analysis.
First, we develop and demonstrate a novel interactively-connected deep recurrent neural network (I$2$DRNN) model.
Second, to theoretically prove that our designed model can learn multi-scale-temporal dependency in PSTA tasks, we provide an information-theoretic analysis.
arXiv Detail & Related papers (2020-09-14T10:05:14Z) - Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a
Survey [1.2031796234206134]
Model-based reinforcement learning creates an explicit model of the environment dynamics to reduce the need for environment samples.
A challenge for deep model-based methods is to achieve high predictive power while maintaining low sample complexity.
We propose a taxonomy based on three approaches: using explicit planning on given transitions, using explicit planning on learned transitions, and end-to-end learning of both planning and transitions.
arXiv Detail & Related papers (2020-08-11T08:49:04Z) - Revealing the Invisible with Model and Data Shrinking for
Composite-database Micro-expression Recognition [49.463864096615254]
We analyze the influence of learning complexity, including the input complexity and model complexity.
We propose a recurrent convolutional network (RCN) to explore the shallower-architecture and lower-resolution input data.
We develop three parameter-free modules to integrate with RCN without increasing any learnable parameters.
arXiv Detail & Related papers (2020-06-17T06:19:24Z) - PAC Bounds for Imitation and Model-based Batch Learning of Contextual
Markov Decision Processes [31.83144400718369]
We consider the problem of batch multi-task reinforcement learning with observed context descriptors, motivated by its application to personalized medical treatment.
We study two general classes of learning algorithms: direct policy learning (DPL), an imitation-learning based approach which learns from expert trajectories, and model-based learning.
arXiv Detail & Related papers (2020-06-11T11:57:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.