SocialInteractionGAN: Multi-person Interaction Sequence Generation
- URL: http://arxiv.org/abs/2103.05916v1
- Date: Wed, 10 Mar 2021 08:11:34 GMT
- Title: SocialInteractionGAN: Multi-person Interaction Sequence Generation
- Authors: Louis Airale (M-PSI, PERCEPTION), Dominique Vaufreydaz (M-PSI), Xavier
Alameda-Pineda (PERCEPTION)
- Abstract summary: We present SocialInteractionGAN, a novel adversarial architecture for conditional interaction generation.
Our model builds on a recurrent encoder-decoder generator network and a dual-stream discriminator.
We show that the proposed SocialInteractionGAN succeeds in producing high realism action sequences of interacting people.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction of human actions in social interactions has important applications
in the design of social robots or artificial avatars. In this paper, we model
human interaction generation as a discrete multi-sequence generation problem
and present SocialInteractionGAN, a novel adversarial architecture for
conditional interaction generation. Our model builds on a recurrent
encoder-decoder generator network and a dual-stream discriminator. This
architecture allows the discriminator to jointly assess the realism of
interactions and that of individual action sequences. Within each stream a
recurrent network operating on short subsequences endows the output signal with
local assessments, better guiding the forthcoming generation. Crucially,
contextual information on interacting participants is shared among agents and
reinjected in both the generation and the discriminator evaluation processes.
We show that the proposed SocialInteractionGAN succeeds in producing high
realism action sequences of interacting people, comparing favorably to a
diversity of recurrent and convolutional discriminator baselines. Evaluations
are conducted using modified Inception Score and Fr{\'e}chet Inception Distance
metrics, that we specifically design for discrete sequential generated data.
The distribution of generated sequences is shown to approach closely that of
real data. In particular our model properly learns the dynamics of interaction
sequences, while exploiting the full range of actions.
Related papers
- Behavior-Inspired Neural Networks for Relational Inference [3.7219180084857473]
Recent works learn to categorize relationships between agents based on observations of their physical behavior.
We introduce a level of abstraction between the observable behavior of agents and the latent categories that determine their behavior.
We integrate the physical proximity of agents and their preferences in a nonlinear opinion dynamics model which provides a mechanism to identify mutually exclusive latent categories, predict an agent's evolution in time, and control an agent's physical behavior.
arXiv Detail & Related papers (2024-06-20T21:36:54Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
Our approach infers dynamically evolving relation graphs and hypergraphs to capture the evolution of relations, which the trajectory predictor employs to generate future states.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Interaction Transformer for Human Reaction Generation [61.22481606720487]
We propose a novel interaction Transformer (InterFormer) consisting of a Transformer network with both temporal and spatial attentions.
Our method is general and can be used to generate more complex and long-term interactions.
arXiv Detail & Related papers (2022-07-04T19:30:41Z) - Social-DualCVAE: Multimodal Trajectory Forecasting Based on Social
Interactions Pattern Aware and Dual Conditional Variational Auto-Encoder [14.05141917351931]
We present a conditional variational auto-encoder (Social-DualCVAE) for multi-modal trajectory forecasting.
It is based on a generative model conditioned not only on the past trajectories but also the unsupervised classification of interaction patterns.
The proposed model is evaluated on widely used trajectory benchmarks and outperforms the prior state-of-the-art methods.
arXiv Detail & Related papers (2022-02-08T16:04:47Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
We propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN) which predicts trajectories of heterogeneous agents in multiply categories.
Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously.
A hierarchical graph attention module is proposed to obtain category-tocategory interaction and agent-to-agent interaction.
arXiv Detail & Related papers (2021-07-31T13:36:04Z) - Information Interaction Profile of Choice Adoption [2.9972063833424216]
We introduce an efficient method to infer the entities interaction network and its evolution according to the temporal distance separating interacting entities.
The interaction profile allows characterizing the mechanisms of the interaction processes.
We show that the effect of a combination of exposures on a user is more than the sum of each exposure's independent effect--there is an interaction.
arXiv Detail & Related papers (2021-04-28T10:42:25Z) - Continuous Latent Position Models for Instantaneous Interactions [0.0]
We create a framework to analyse the timing and frequency of instantaneous interactions between pairs of entities.
Examples of instantaneous interactions include email networks, phone call networks and some common types of technological and transportation networks.
arXiv Detail & Related papers (2021-03-31T15:10:58Z) - Learning Asynchronous and Sparse Human-Object Interaction in Videos [56.73059840294019]
Asynchronous-Sparse Interaction Graph Networks (ASSIGN) is able to automatically detect the structure of interaction events associated with entities in a video scene.
ASSIGN is tested on human-object interaction recognition and shows superior performance in segmenting and labeling of human sub-activities and object affordances from raw videos.
arXiv Detail & Related papers (2021-03-03T23:43:55Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
We propose a generic trajectory forecasting framework with explicit relational structure recognition and prediction via latent interaction graphs.
Considering the uncertainty of future behaviors, the model is designed to provide multi-modal prediction hypotheses.
We introduce a double-stage training pipeline which not only improves training efficiency and accelerates convergence, but also enhances model performance.
arXiv Detail & Related papers (2020-03-31T02:49:23Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.