Holistic 3D Scene Understanding from a Single Image with Implicit
Representation
- URL: http://arxiv.org/abs/2103.06422v1
- Date: Thu, 11 Mar 2021 02:52:46 GMT
- Title: Holistic 3D Scene Understanding from a Single Image with Implicit
Representation
- Authors: Cheng Zhang, Zhaopeng Cui, Yinda Zhang, Bing Zeng, Marc Pollefeys,
Shuaicheng Liu
- Abstract summary: We present a new pipeline for holistic 3D scene understanding from a single image.
We propose an image-based local structured implicit network to improve the object shape estimation.
We also refine 3D object pose and scene layout via a novel implicit scene graph neural network.
- Score: 112.40630836979273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new pipeline for holistic 3D scene understanding from a single
image, which could predict object shape, object pose, and scene layout. As it
is a highly ill-posed problem, existing methods usually suffer from inaccurate
estimation of both shapes and layout especially for the cluttered scene due to
the heavy occlusion between objects. We propose to utilize the latest deep
implicit representation to solve this challenge. We not only propose an
image-based local structured implicit network to improve the object shape
estimation, but also refine 3D object pose and scene layout via a novel
implicit scene graph neural network that exploits the implicit local object
features. A novel physical violation loss is also proposed to avoid incorrect
context between objects. Extensive experiments demonstrate that our method
outperforms the state-of-the-art methods in terms of object shape, scene layout
estimation, and 3D object detection.
Related papers
- ObjectCarver: Semi-automatic segmentation, reconstruction and separation of 3D objects [44.38881095466177]
Implicit neural fields have made remarkable progress in reconstructing 3D surfaces from multiple images.
Previous work has attempted to tackle this problem by introducing a framework to train separate signed distance fields.
We introduce our method, ObjectCarver, to tackle the problem of object separation from just click input in a single view.
arXiv Detail & Related papers (2024-07-26T22:13:20Z) - Know Your Neighbors: Improving Single-View Reconstruction via Spatial Vision-Language Reasoning [119.99066522299309]
KYN is a novel method for single-view scene reconstruction that reasons about semantic and spatial context to predict each point's density.
We show that KYN improves 3D shape recovery compared to predicting density for each 3D point in isolation.
We achieve state-of-the-art results in scene and object reconstruction on KITTI-360, and show improved zero-shot generalization compared to prior work.
arXiv Detail & Related papers (2024-04-04T17:59:59Z) - Disentangled 3D Scene Generation with Layout Learning [109.03233745767062]
We introduce a method to generate 3D scenes that are disentangled into their component objects.
Our key insight is that objects can be discovered by finding parts of a 3D scene that, when rearranged spatially, still produce valid configurations of the same scene.
We show that despite its simplicity, our approach successfully generates 3D scenes into individual objects.
arXiv Detail & Related papers (2024-02-26T18:54:15Z) - InseRF: Text-Driven Generative Object Insertion in Neural 3D Scenes [86.26588382747184]
We introduce InseRF, a novel method for generative object insertion in the NeRF reconstructions of 3D scenes.
Based on a user-provided textual description and a 2D bounding box in a reference viewpoint, InseRF generates new objects in 3D scenes.
arXiv Detail & Related papers (2024-01-10T18:59:53Z) - Towards High-Fidelity Single-view Holistic Reconstruction of Indoor
Scenes [50.317223783035075]
We present a new framework to reconstruct holistic 3D indoor scenes from single-view images.
We propose an instance-aligned implicit function (InstPIFu) for detailed object reconstruction.
Our code and model will be made publicly available.
arXiv Detail & Related papers (2022-07-18T14:54:57Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
We propose MonoRUn, a novel 3D object detection framework that learns dense correspondences and geometry in a self-supervised manner.
Our proposed approach outperforms current state-of-the-art methods on KITTI benchmark.
arXiv Detail & Related papers (2021-03-23T15:03:08Z) - Disentangling 3D Prototypical Networks For Few-Shot Concept Learning [29.02523358573336]
We present neural architectures that disentangle RGB-D images into objects' shapes and styles and a map of the background scene.
Our networks incorporate architectural biases that reflect the image formation process, 3D geometry of the world scene, and shape-style interplay.
arXiv Detail & Related papers (2020-11-06T14:08:27Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONet is a novel approach for learning Multi-Object 3D scene decomposition and representations from single images.
A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image.
We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation.
arXiv Detail & Related papers (2020-10-08T14:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.