Knowledge Graph Question Answering using Graph-Pattern Isomorphism
- URL: http://arxiv.org/abs/2103.06752v1
- Date: Thu, 11 Mar 2021 16:03:24 GMT
- Title: Knowledge Graph Question Answering using Graph-Pattern Isomorphism
- Authors: Daniel Vollmers (1), Rricha Jalota (1), Diego Moussallem (1), Hardik
Topiwala (1), Axel-Cyrille Ngonga Ngomo (1), and Ricardo Usbeck (2) ((1) Data
Science Group, Paderborn University, Germany, (2) Fraunhofer IAIS, Dresden,
Germany)
- Abstract summary: TeBaQA learns to answer questions based on graph isomorphisms from basic graph patterns of SPARQL queries.
TeBaQA achieves state-of-the-art performance on QALD-8 and delivers comparable results on QALD-9 and LC-QuAD v1.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Graph Question Answering (KGQA) systems are based on machine
learning algorithms, requiring thousands of question-answer pairs as training
examples or natural language processing pipelines that need module fine-tuning.
In this paper, we present a novel QA approach, dubbed TeBaQA. Our approach
learns to answer questions based on graph isomorphisms from basic graph
patterns of SPARQL queries. Learning basic graph patterns is efficient due to
the small number of possible patterns. This novel paradigm reduces the amount
of training data necessary to achieve state-of-the-art performance. TeBaQA also
speeds up the domain adaption process by transforming the QA system development
task into a much smaller and easier data compilation task. In our evaluation,
TeBaQA achieves state-of-the-art performance on QALD-8 and delivers comparable
results on QALD-9 and LC-QuAD v1. Additionally, we performed a fine-grained
evaluation on complex queries that deal with aggregation and superlative
questions as well as an ablation study, highlighting future research
challenges.
Related papers
- Graph Guided Question Answer Generation for Procedural
Question-Answering [29.169773816553153]
We introduce a method for generating exhaustive and high-quality training data for task-specific question answering (QA) models.
Key technological enabler is a novel mechanism for automatic question-answer generation from procedural text.
We show that small models trained with our data achieve excellent performance on the target QA task, even exceeding that of GPT3 and ChatGPT.
arXiv Detail & Related papers (2024-01-24T17:01:42Z) - MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering [64.6741991162092]
We present MinPrompt, a minimal data augmentation framework for open-domain question answering.
We transform the raw text into a graph structure to build connections between different factual sentences.
We then apply graph algorithms to identify the minimal set of sentences needed to cover the most information in the raw text.
We generate QA pairs based on the identified sentence subset and train the model on the selected sentences to obtain the final model.
arXiv Detail & Related papers (2023-10-08T04:44:36Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - Graph Attention with Hierarchies for Multi-hop Question Answering [19.398300844233837]
We present two extensions to the SOTA Graph Neural Network (GNN) based model for HotpotQA.
Experiments on HotpotQA demonstrate the efficiency of the proposed modifications.
arXiv Detail & Related papers (2023-01-27T15:49:50Z) - Question-Answer Sentence Graph for Joint Modeling Answer Selection [122.29142965960138]
We train and integrate state-of-the-art (SOTA) models for computing scores between question-question, question-answer, and answer-answer pairs.
Online inference is then performed to solve the AS2 task on unseen queries.
arXiv Detail & Related papers (2022-02-16T05:59:53Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
We propose a conditional variational autoencoder (HCVAE) for generating QA pairs given unstructured texts as contexts.
Our model obtains impressive performance gains over all baselines on both tasks, using only a fraction of data for training.
arXiv Detail & Related papers (2020-05-28T08:26:06Z) - Harvesting and Refining Question-Answer Pairs for Unsupervised QA [95.9105154311491]
We introduce two approaches to improve unsupervised Question Answering (QA)
First, we harvest lexically and syntactically divergent questions from Wikipedia to automatically construct a corpus of question-answer pairs (named as RefQA)
Second, we take advantage of the QA model to extract more appropriate answers, which iteratively refines data over RefQA.
arXiv Detail & Related papers (2020-05-06T15:56:06Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
We propose an unsupervised approach to training QA models with generated pseudo-training data.
We show that generating questions for QA training by applying a simple template on a related, retrieved sentence rather than the original context sentence improves downstream QA performance.
arXiv Detail & Related papers (2020-04-24T17:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.