$\mathcal{PT}$-symmetry breaking in a Kitaev chain with one pair of
gain-loss potentials
- URL: http://arxiv.org/abs/2103.07058v1
- Date: Fri, 12 Mar 2021 03:10:45 GMT
- Title: $\mathcal{PT}$-symmetry breaking in a Kitaev chain with one pair of
gain-loss potentials
- Authors: Kaustubh S. Agarwal and Yogesh N. Joglekar
- Abstract summary: Parity-time symmetric systems are governed by non-Hermitian Hamiltonians with exceptional-point (EP) degeneracies.
Here, we obtain the $mathcalPT$-threshold for a one-dimensional, finite Kitaev chain.
In particular, for an even chain with zero on-site potential, we find a re-entrant $mathcalPT$-symmetric phase bounded by second-order EP contours.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parity-time ($\mathcal{PT}$) symmetric systems are classical, gain-loss
systems whose dynamics are governed by non-Hermitian Hamiltonians with
exceptional-point (EP) degeneracies. The eigenvalues of a
$\mathcal{PT}$-symmetric Hamiltonian change from real to complex conjugates at
a critical value of gain-loss strength that is called the $\mathcal{PT}$
breaking threshold. Here, we obtain the $\mathcal{PT}$-threshold for a
one-dimensional, finite Kitaev chain -- a prototype for a p-wave superconductor
-- in the presence of a single pair of gain and loss potentials as a function
of the superconducting order parameter, on-site potential, and the distance
between the gain and loss sites. In addition to a robust, non-local threshold,
we find a rich phase diagram for the threshold that can be qualitatively
understood in terms of the band-structure of the Hermitian Kitaev mo del. In
particular, for an even chain with zero on-site potential, we find a re-entrant
$\mathcal{PT}$-symmetric phase bounded by second-order EP contours. Our
numerical results are supplemented by analytical calculations for small system
sizes.
Related papers
- Schrieffer-Wolff transformation for non-Hermitian systems: application
for $\mathcal{PT}$-symmetric circuit QED [0.0]
We develop the generalized Schrieffer-Wolff transformation and derive the effective Hamiltonian suitable for various quasi-degenerate textitnon-Hermitian systems.
We show that non-hermiticity mixes the "dark" and the "bright" states, which has a direct experimental consequence.
arXiv Detail & Related papers (2023-09-18T14:50:29Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Effects of detuning on $\mathcal{PT}$-symmetric, tridiagonal,
tight-binding models [0.0]
Non-Hermitian, tight-binding $mathcalPT$-symmetric models are extensively studied in the literature.
Here, we investigate two forms of non-Hermitian Hamiltonians to study the $mathcalPT$-symmetry breaking thresholds and features of corresponding surfaces of exceptional points (EPs)
Taken together, our results provide a detailed understanding of detuned tight-binding models with a pair of gain-loss potentials.
arXiv Detail & Related papers (2023-02-26T01:36:59Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Parity-dependent unidirectional and chiral photon transfer in
reversed-dissipation cavity optomechanics [11.712867508048555]
We show broadband nonreciprocal photon transmission in the emphreversed-dissipation regime.
In the reversed-dissipation regime, the nonreciprocal bandwidth is no longer limited by the mechanical mode linewidth.
We find that the direction of the unidirectional and chiral energy transfer could be reversed by changing the emphparity of the Eps.
arXiv Detail & Related papers (2022-12-22T23:57:00Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - SYK meets non-Hermiticity II: measurement-induced phase transition [16.533265279392772]
We analytically derive the effective action in the large-$N$ limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space.
We also verify the large-$N$ critical exponents by numerically solving the Schwinger-Dyson equation.
arXiv Detail & Related papers (2021-04-16T17:55:08Z) - Connecting active and passive $\mathcal{PT}$-symmetric Floquet
modulation models [0.0]
We present a simple model of a time-dependent $mathcalPT$-symmetric Hamiltonian which smoothly connects the static case, a $mathcalPT$-symmetric Floquet case, and a neutral-$mathcalPT$-symmetric case.
We show that slivers of $mathcalPT$-broken ($mathcalPT$-symmetric) phase extend deep into the nominally low (high) non-Hermiticity region.
arXiv Detail & Related papers (2020-08-04T20:14:20Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z) - Quantum correlations in $\mathcal{PT}$-symmetric systems [0.0]
We study the dynamics of correlations in a paradigmatic setup to observe $mathcalPT$-symmetric physics.
Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely.
arXiv Detail & Related papers (2020-02-25T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.