Progressive residual learning for single image dehazing
- URL: http://arxiv.org/abs/2103.07973v1
- Date: Sun, 14 Mar 2021 16:54:44 GMT
- Title: Progressive residual learning for single image dehazing
- Authors: Yudong Liang, Bin Wang, Jiaying Liu, Deyu Li, Yuhua Qian and Wenqi Ren
- Abstract summary: A progressive residual learning strategy has been proposed to combine the physical model-free dehazing process with reformulated scattering model-based dehazing operations.
The proposed method performs favorably against the state-of-the-art methods on public dehazing benchmarks with better model interpretability and adaptivity for complex data.
- Score: 57.651704852274825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent physical model-free dehazing methods have achieved
state-of-the-art performances. However, without the guidance of physical
models, the performances degrade rapidly when applied to real scenarios due to
the unavailable or insufficient data problems. On the other hand, the physical
model-based methods have better interpretability but suffer from
multi-objective optimizations of parameters, which may lead to sub-optimal
dehazing results. In this paper, a progressive residual learning strategy has
been proposed to combine the physical model-free dehazing process with
reformulated scattering model-based dehazing operations, which enjoys the
merits of dehazing methods in both categories. Specifically, the global
atmosphere light and transmission maps are interactively optimized with the aid
of accurate residual information and preliminary dehazed restorations from the
initial physical model-free dehazing process. The proposed method performs
favorably against the state-of-the-art methods on public dehazing benchmarks
with better model interpretability and adaptivity for complex hazy data.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
Black box models in machine learning have demonstrated excellent predictive performance in complex problems and high-dimensional settings.
Their lack of transparency and interpretability restrict the applicability of such models in critical decision-making processes.
We propose a novel approach to trading off interpretability and performance in prediction models using ideas from semiparametric statistics.
arXiv Detail & Related papers (2020-06-08T16:38:15Z) - Real-Time Model Calibration with Deep Reinforcement Learning [4.707841918805165]
We propose a novel framework for inference of model parameters based on reinforcement learning.
The proposed methodology is demonstrated and evaluated on two model-based diagnostics test cases.
arXiv Detail & Related papers (2020-06-07T00:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.