Function approximation by deep neural networks with parameters $\{0,\pm
\frac{1}{2}, \pm 1, 2\}$
- URL: http://arxiv.org/abs/2103.08659v1
- Date: Mon, 15 Mar 2021 19:10:02 GMT
- Title: Function approximation by deep neural networks with parameters $\{0,\pm
\frac{1}{2}, \pm 1, 2\}$
- Authors: Aleksandr Beknazaryan
- Abstract summary: It is shown that $C_beta$-smooth functions can be approximated by neural networks with parameters $0,pm frac12, pm 1, 2$.
The depth, width and the number of active parameters of constructed networks have, up to a logarithimc factor, the same dependence on the approximation error as the networks with parameters in $[-1,1]$.
- Score: 91.3755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper it is shown that $C_\beta$-smooth functions can be approximated
by neural networks with parameters $\{0,\pm \frac{1}{2}, \pm 1, 2\}$. The
depth, width and the number of active parameters of constructed networks have,
up to a logarithimc factor, the same dependence on the approximation error as
the networks with parameters in $[-1,1]$. In particular, this means that the
nonparametric regression estimation with constructed networks attain the same
convergence rate as with the sparse networks with parameters in $[-1,1]$.
Related papers
- Deep Neural Networks: Multi-Classification and Universal Approximation [0.0]
We demonstrate that a ReLU deep neural network with a width of $2$ and a depth of $2N+4M-1$ layers can achieve finite sample memorization for any dataset comprising $N$ elements.
We also provide depth estimates for approximating $W1,p$ functions and width estimates for approximating $Lp(Omega;mathbbRm)$ for $mgeq1$.
arXiv Detail & Related papers (2024-09-10T14:31:21Z) - Bayesian Inference with Deep Weakly Nonlinear Networks [57.95116787699412]
We show at a physics level of rigor that Bayesian inference with a fully connected neural network is solvable.
We provide techniques to compute the model evidence and posterior to arbitrary order in $1/N$ and at arbitrary temperature.
arXiv Detail & Related papers (2024-05-26T17:08:04Z) - Shallow neural network representation of polynomials [91.3755431537592]
We show that $d$-variables of degreeR$ can be represented on $[0,1]d$ as shallow neural networks of width $d+1+sum_r=2Rbinomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1d-1[binomr+d-1d-1d-1d-1
arXiv Detail & Related papers (2022-08-17T08:14:52Z) - Expressive power of binary and ternary neural networks [91.3755431537592]
We show that deep sparse ReLU networks with ternary weights and deep ReLU networks with binary weights can approximate $beta$-H"older functions on $[0,1]d$.
arXiv Detail & Related papers (2022-06-27T13:16:08Z) - Theory of Deep Convolutional Neural Networks III: Approximating Radial
Functions [7.943024117353317]
We consider a family of deep neural networks consisting of two groups of convolutional layers, a down operator, and a fully connected layer.
The network structure depends on two structural parameters which determine the numbers of convolutional layers and the width of the fully connected layer.
arXiv Detail & Related papers (2021-07-02T08:22:12Z) - The Rate of Convergence of Variation-Constrained Deep Neural Networks [35.393855471751756]
We show that a class of variation-constrained neural networks can achieve near-parametric rate $n-1/2+delta$ for an arbitrarily small constant $delta$.
The result indicates that the neural function space needed for approximating smooth functions may not be as large as what is often perceived.
arXiv Detail & Related papers (2021-06-22T21:28:00Z) - Deep neural network approximation of analytic functions [91.3755431537592]
entropy bound for the spaces of neural networks with piecewise linear activation functions.
We derive an oracle inequality for the expected error of the considered penalized deep neural network estimators.
arXiv Detail & Related papers (2021-04-05T18:02:04Z) - Provable Memorization via Deep Neural Networks using Sub-linear
Parameters [91.0268925267129]
It is known that $O(N)$ parameters are sufficient for neural networks to memorize arbitrary $N$ input-label pairs.
By exploiting depth, we show that $O(N2/3)$ parameters suffice to memorize $N$ pairs, under a mild condition on the separation of input points.
arXiv Detail & Related papers (2020-10-26T06:19:38Z) - Nonclosedness of Sets of Neural Networks in Sobolev Spaces [0.0]
We show that realized neural networks are not closed in order-$(m-1)$ Sobolev spaces $Wm-1,p$ for $p in [1,infty]$.
For a real analytic activation function, we show that sets of realized neural networks are not closed in $Wk,p$ for any $k in mathbbN$.
arXiv Detail & Related papers (2020-07-23T00:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.