Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla
- URL: http://arxiv.org/abs/2103.08730v1
- Date: Mon, 15 Mar 2021 21:38:41 GMT
- Title: Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla
- Authors: Simone Chicco, Alessandro Chiesa, Giuseppe Allodi, Elena Garlatti,
Matteo Atzori, Lorenzo Sorace, Roberto De Renzi, Roberta Sessoli, and Stefano
Carretta
- Abstract summary: We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
- Score: 50.002949299918136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising
system suitable to implement quantum computation algorithms based on encoding
information in multi-level (qudit) units. Indeed, it embeds an electronic spin
1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both
characterized by remarkable coherence. We demonstrate this by an extensive
broadband nuclear magnetic resonance study, which allow us to characterize the
nuclear spin-Hamiltonian and to measure the spin dephasing time as a function
of the magnetic field. In addition, we combine targeted measurements and
numerical simulations to show that nuclear spin transitions conditioned by the
state of the electronic qubit can be individually addressed and coherently
manipulated by resonant radio-frequency pulses, thanks to the remarkably long
coherence times and the effective quadrupolar coupling induced by the strong
hyperfine coupling. This approach may open new perspectives for developing new
molecular qubit-qudit systems.
Related papers
- Enhancing Electron-Nuclear Resonances by Dynamical Control Switching [4.52102208934009]
We show that a specific dynamical switching of the electron spin Rabi frequency achieves efficient electron-nuclear coupling.
This protocol has applications in high-field nanoscale nuclear magnetic resonances as well as low-power quantum control of nuclear spins.
arXiv Detail & Related papers (2023-11-17T17:12:47Z) - Spin decoherence in VOPc@graphene nanoribbon complexes [5.691318972818067]
Carbon nanoribbon or nanographene qubit arrays can facilitate quantum-to-quantum transduction between light, charge, and spin.
We study spin decoherence due to coupling with a surrounding nuclear spin bath of an electronic molecular spin of a vanadyl phthalocyanine (VOPc) molecule integrated on an armchair-edged graphene nanoribbon (GNR)
We find that the decoherence time $T$ is anisotropic with respect to magnetic field orientation and determined only by nuclear spins on VOPc and GNR.
arXiv Detail & Related papers (2023-07-31T04:55:05Z) - Wigner-molecularization-enabled dynamic nuclear field programming [2.545763876632975]
We show efficient control of spin transfer between an artificial three-electron WM and the nuclear environment in a GaAs double QD.
We confirm the multiplet spin structure of a WM, paving the way for active control of newly emerging correlated electron states for application in mesoscopic environment engineering.
arXiv Detail & Related papers (2022-07-24T04:14:16Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system [0.0]
Nuclear spins show long coherence times and are well isolated from the environment.
We present a method for nuclear spin readout by probing the transmission of a microwave resonator.
arXiv Detail & Related papers (2020-12-02T16:51:50Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.