Flow-based Self-supervised Density Estimation for Anomalous Sound
Detection
- URL: http://arxiv.org/abs/2103.08801v1
- Date: Tue, 16 Mar 2021 01:52:03 GMT
- Title: Flow-based Self-supervised Density Estimation for Anomalous Sound
Detection
- Authors: Kota Dohi, Takashi Endo, Harsh Purohit, Ryo Tanabe, Yohei Kawaguchi
- Abstract summary: We train a model to assign higher likelihood to target machine sounds and lower likelihood to sounds from other machines of the same machine type.
Experiments conducted using the DCASE 2020 Challenge Task2 dataset showed that the proposed method improves the AUC by 4.6% on average.
- Score: 6.495759450230705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To develop a machine sound monitoring system, a method for detecting
anomalous sound is proposed. Exact likelihood estimation using Normalizing
Flows is a promising technique for unsupervised anomaly detection, but it can
fail at out-of-distribution detection since the likelihood is affected by the
smoothness of the data. To improve the detection performance, we train the
model to assign higher likelihood to target machine sounds and lower likelihood
to sounds from other machines of the same machine type. We demonstrate that
this enables the model to incorporate a self-supervised classification-based
approach. Experiments conducted using the DCASE 2020 Challenge Task2 dataset
showed that the proposed method improves the AUC by 4.6% on average when using
Masked Autoregressive Flow (MAF) and by 5.8% when using Glow, which is a
significant improvement over the previous method.
Related papers
- MIMII-Gen: Generative Modeling Approach for Simulated Evaluation of Anomalous Sound Detection System [5.578413517654703]
Insufficient recordings and the scarcity of anomalies present significant challenges in developing robust anomaly detection systems.
We propose a novel approach for generating diverse anomalies in machine sound using a latent diffusion-based model that integrates an encoder-decoder framework.
arXiv Detail & Related papers (2024-09-27T08:21:31Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Denoising diffusion models for out-of-distribution detection [2.113925122479677]
We exploit the view of denoising probabilistic diffusion models (DDPM) as denoising autoencoders.
We use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs.
arXiv Detail & Related papers (2022-11-14T20:35:11Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly
Detection [8.136103644634348]
Existing approaches such as deep autoencoder (DAE), variational autoencoder (VAE), conditional variational autoencoder (CVAE) etc. have limited representation capabilities in the latent space.
We propose a new method named as hierarchical conditional variational autoencoder (HCVAE)
This method utilizes available taxonomic hierarchical knowledge about industrial facility to refine the latent space representation.
arXiv Detail & Related papers (2022-06-11T08:15:01Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.