Exploring the Assessment List for Trustworthy AI in the Context of
Advanced Driver-Assistance Systems
- URL: http://arxiv.org/abs/2103.09051v1
- Date: Thu, 4 Mar 2021 21:48:11 GMT
- Title: Exploring the Assessment List for Trustworthy AI in the Context of
Advanced Driver-Assistance Systems
- Authors: Markus Borg, Joshua Bronson, Linus Christensson, Fredrik Olsson, Olof
Lennartsson, Elias Sonnsj\"o, Hamid Ebabi, Martin Karsberg
- Abstract summary: The European Commission appointed experts to a High-Level Expert Group on AI (AI-HLEG)
AI-HLEG defined Trustworthy AI as 1) lawful, 2) ethical, and 3) robust and specified seven corresponding key requirements.
We present an illustrative case study from applying ALTAI to an ongoing development project of an Advanced Driver-Assistance System.
- Score: 5.386962356892352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) is increasingly used in critical applications.
Thus, the need for dependable AI systems is rapidly growing. In 2018, the
European Commission appointed experts to a High-Level Expert Group on AI
(AI-HLEG). AI-HLEG defined Trustworthy AI as 1) lawful, 2) ethical, and 3)
robust and specified seven corresponding key requirements. To help development
organizations, AI-HLEG recently published the Assessment List for Trustworthy
AI (ALTAI). We present an illustrative case study from applying ALTAI to an
ongoing development project of an Advanced Driver-Assistance System (ADAS) that
relies on Machine Learning (ML). Our experience shows that ALTAI is largely
applicable to ADAS development, but specific parts related to human agency and
transparency can be disregarded. Moreover, bigger questions related to societal
and environmental impact cannot be tackled by an ADAS supplier in isolation. We
present how we plan to develop the ADAS to ensure ALTAI-compliance. Finally, we
provide three recommendations for the next revision of ALTAI, i.e., life-cycle
variants, domain-specific adaptations, and removed redundancy.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
The EU has recently issued several publications emphasizing the necessity of trust in AI.
This highlights the urgent need for international regulation.
This paper introduces a comprehensive and, to our knowledge, the first unified definition of responsible AI.
arXiv Detail & Related papers (2024-03-11T17:01:13Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
There is a significant gap between high-level AI ethics principles and low-level concrete practices for AI professionals.
We develop a novel holistic framework for Trustworthy AI - designed to bridge the gap between theory and practice.
Our goal is to empower AI professionals to confidently navigate the ethical dimensions of Trustworthy AI.
arXiv Detail & Related papers (2024-02-08T01:05:16Z) - Guideline for Trustworthy Artificial Intelligence -- AI Assessment
Catalog [0.0]
It is clear that AI and business models based on it can only reach their full potential if AI applications are developed according to high quality standards.
The issue of the trustworthiness of AI applications is crucial and is the subject of numerous major publications.
This AI assessment catalog addresses exactly this point and is intended for two target groups.
arXiv Detail & Related papers (2023-06-20T08:07:18Z) - RE-centric Recommendations for the Development of Trustworthy(er)
Autonomous Systems [4.268504966623082]
Complying with the EU AI Act (AIA) guidelines while developing and implementing AI systems will soon be mandatory within the EU.
practitioners lack actionable instructions to operationalise ethics during AI systems development.
A literature review of different ethical guidelines revealed inconsistencies in the principles addressed and the terminology used to describe them.
arXiv Detail & Related papers (2023-05-29T11:57:07Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
Many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc.
In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems.
To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems.
arXiv Detail & Related papers (2021-10-04T03:20:39Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.