SPICE: Semantic Pseudo-labeling for Image Clustering
- URL: http://arxiv.org/abs/2103.09382v1
- Date: Wed, 17 Mar 2021 00:52:27 GMT
- Title: SPICE: Semantic Pseudo-labeling for Image Clustering
- Authors: Chuang Niu and Ge Wang
- Abstract summary: SPICE is a Semantic Pseudo-labeling framework for Image ClustEring.
It generates pseudo-labels via self-learning and uses the pseudo-label-based classification loss to train a deep clustering network.
Our method improves the current best results by about 10% in terms of adjusted rand index, normalized mutual information, and clustering accuracy.
- Score: 5.357314252311141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents SPICE, a Semantic Pseudo-labeling framework for Image
ClustEring. Instead of using indirect loss functions required by the recently
proposed methods, SPICE generates pseudo-labels via self-learning and directly
uses the pseudo-label-based classification loss to train a deep clustering
network. The basic idea of SPICE is to synergize the discrepancy among semantic
clusters, the similarity among instance samples, and the semantic consistency
of local samples in an embedding space to optimize the clustering network in a
semantically-driven paradigm. Specifically, a semantic-similarity-based
pseudo-labeling algorithm is first proposed to train a clustering network
through unsupervised representation learning. Given the initial clustering
results, a local semantic consistency principle is used to select a set of
reliably labeled samples, and a semi-pseudo-labeling algorithm is adapted for
performance boosting. Extensive experiments demonstrate that SPICE clearly
outperforms the state-of-the-art methods on six common benchmark datasets
including STL10, Cifar10, Cifar100-20, ImageNet-10, ImageNet-Dog, and
Tiny-ImageNet. On average, our SPICE method improves the current best results
by about 10% in terms of adjusted rand index, normalized mutual information,
and clustering accuracy.
Related papers
- Semi-supervised Semantic Segmentation Meets Masked Modeling:Fine-grained
Locality Learning Matters in Consistency Regularization [31.333862320143968]
Semi-supervised semantic segmentation aims to utilize limited labeled images and abundant unlabeled images to achieve label-efficient learning.
We propose a novel framework called textttMaskMatch, which enables fine-grained locality learning to achieve better dense segmentation.
arXiv Detail & Related papers (2023-12-14T03:28:53Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
This paper presents a simple but performant semi-supervised semantic segmentation approach, called CorrMatch.
We observe that the correlation maps not only enable clustering pixels of the same category easily but also contain good shape information.
We propose to conduct pixel propagation by modeling the pairwise similarities of pixels to spread the high-confidence pixels and dig out more.
Then, we perform region propagation to enhance the pseudo labels with accurate class-agnostic masks extracted from the correlation maps.
arXiv Detail & Related papers (2023-06-07T10:02:29Z) - Meta-learning representations for clustering with infinite Gaussian
mixture models [39.56814839510978]
We propose a meta-learning method that train neural networks for obtaining representations such that clustering performance improves.
The proposed method can cluster unseen unlabeled data using knowledge meta-learned with labeled data that are different from the unlabeled data.
arXiv Detail & Related papers (2021-03-01T02:05:31Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z) - GATCluster: Self-Supervised Gaussian-Attention Network for Image
Clustering [9.722607434532883]
We propose a self-supervised clustering network for image Clustering (GATCluster)
Rather than extracting intermediate features first and then performing the traditional clustering, GATCluster semantic cluster labels without further post-processing.
We develop a two-step learning algorithm that is memory-efficient for clustering large-size images.
arXiv Detail & Related papers (2020-02-27T00:57:18Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z) - Towards Bounding-Box Free Panoptic Segmentation [16.4548904544277]
We introduce a new Bounding-Box Free Network (BBFNet) for panoptic segmentation.
BBFNet predicts coarse watershed levels and uses them to detect large instance candidates where boundaries are well defined.
For smaller instances, whose boundaries are less reliable, BBFNet also predicts instance centers by means of Hough voting followed by mean-shift to reliably detect small objects.
arXiv Detail & Related papers (2020-02-18T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.