An Efficient Method for the Classification of Croplands in Scarce-Label
Regions
- URL: http://arxiv.org/abs/2103.09588v1
- Date: Wed, 17 Mar 2021 12:10:11 GMT
- Title: An Efficient Method for the Classification of Croplands in Scarce-Label
Regions
- Authors: Houtan Ghaffari
- Abstract summary: Two of the main challenges for cropland classification by satellite time-series images are insufficient ground-truth data and inaccessibility of high-quality hyperspectral images for under-developed areas.
Unlabeled medium-resolution satellite images are abundant, but how to benefit from them is an open question.
We will show how to leverage their potential for cropland classification using self-supervised tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two of the main challenges for cropland classification by satellite
time-series images are insufficient ground-truth data and inaccessibility of
high-quality hyperspectral images for under-developed areas. Unlabeled
medium-resolution satellite images are abundant, but how to benefit from them
is an open question. We will show how to leverage their potential for cropland
classification using self-supervised tasks. Self-supervision is an approach
where we provide simple training signals for the samples, which are apparent
from the data's structure. Hence, they are cheap to acquire and explain a
simple concept about the data. We introduce three self-supervised tasks for
cropland classification. They reduce epistemic uncertainty, and the resulting
model shows superior accuracy in a wide range of settings compared to SVM and
Random Forest. Subsequently, we use the self-supervised tasks to perform
unsupervised domain adaptation and benefit from the labeled samples in other
regions. It is crucial to know what information to transfer to avoid degrading
the performance. We show how to automate the information selection and transfer
process in cropland classification even when the source and target areas have a
very different feature distribution. We improved the model by about 24%
compared to a baseline architecture without any labeled sample in the target
domain. Our method is amenable to gradual improvement, works with
medium-resolution satellite images, and does not require complicated models.
Code and data are available.
Related papers
- SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Weakly-supervised deepfake localization in diffusion-generated images [4.548755617115687]
We propose a weakly-supervised localization problem based on the Xception network as the backbone architecture.
We show that the best performing detection method (based on local scores) is less sensitive to the looser supervision than to the mismatch in terms of dataset or generator.
arXiv Detail & Related papers (2023-11-08T10:27:36Z) - Cross-Level Distillation and Feature Denoising for Cross-Domain Few-Shot
Classification [49.36348058247138]
We tackle the problem of cross-domain few-shot classification by making a small proportion of unlabeled images in the target domain accessible in the training stage.
We meticulously design a cross-level knowledge distillation method, which can strengthen the ability of the model to extract more discriminative features in the target dataset.
Our approach can surpass the previous state-of-the-art method, Dynamic-Distillation, by 5.44% on 1-shot and 1.37% on 5-shot classification tasks.
arXiv Detail & Related papers (2023-11-04T12:28:04Z) - Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
Building footprint maps offer promise of precise footprint extraction without extensive post-processing.
Deep learning methods face challenges in generalization and label efficiency.
We propose terrain-aware self-supervised learning tailored to remote sensing.
arXiv Detail & Related papers (2023-11-02T12:34:23Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Habitat classification from satellite observations with sparse
annotations [4.164845768197488]
We propose a method for habitat classification and mapping using remote sensing data.
The method is characterized by using finely-grained, sparse, single-pixel annotations collected from the field.
We show that cropping augmentations, test-time augmentation and semi-supervised learning can help classification even further.
arXiv Detail & Related papers (2022-09-26T20:14:59Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.