Learning to Resize Images for Computer Vision Tasks
- URL: http://arxiv.org/abs/2103.09950v1
- Date: Wed, 17 Mar 2021 23:43:44 GMT
- Title: Learning to Resize Images for Computer Vision Tasks
- Authors: Hossein Talebi, Peyman Milanfar
- Abstract summary: We show that the typical linear resizer can be replaced with learned resizers that can substantially improve performance.
Our learned image resizer is jointly trained with a baseline vision model.
We show that the proposed resizer can also be useful for fine-tuning the classification baselines for other vision tasks.
- Score: 15.381549764216134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For all the ways convolutional neural nets have revolutionized computer
vision in recent years, one important aspect has received surprisingly little
attention: the effect of image size on the accuracy of tasks being trained for.
Typically, to be efficient, the input images are resized to a relatively small
spatial resolution (e.g. 224x224), and both training and inference are carried
out at this resolution. The actual mechanism for this re-scaling has been an
afterthought: Namely, off-the-shelf image resizers such as bilinear and bicubic
are commonly used in most machine learning software frameworks. But do these
resizers limit the on task performance of the trained networks? The answer is
yes. Indeed, we show that the typical linear resizer can be replaced with
learned resizers that can substantially improve performance. Importantly, while
the classical resizers typically result in better perceptual quality of the
downscaled images, our proposed learned resizers do not necessarily give better
visual quality, but instead improve task performance. Our learned image resizer
is jointly trained with a baseline vision model. This learned CNN-based resizer
creates machine friendly visual manipulations that lead to a consistent
improvement of the end task metric over the baseline model. Specifically, here
we focus on the classification task with the ImageNet dataset, and experiment
with four different models to learn resizers adapted to each model. Moreover,
we show that the proposed resizer can also be useful for fine-tuning the
classification baselines for other vision tasks. To this end, we experiment
with three different baselines to develop image quality assessment (IQA) models
on the AVA dataset.
Related papers
- Combined CNN and ViT features off-the-shelf: Another astounding baseline for recognition [49.14350399025926]
We apply pre-trained architectures, originally developed for the ImageNet Large Scale Visual Recognition Challenge, for periocular recognition.
Middle-layer features from CNNs and ViTs are a suitable way to recognize individuals based on periocular images.
arXiv Detail & Related papers (2024-07-28T11:52:36Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
Humans possess remarkable ability to accurately classify new, unseen images after being exposed to only a few examples.
For artificial neural network models, determining the most relevant features for distinguishing between two images with limited samples presents a challenge.
We propose an intra-task mutual attention method for few-shot learning, that involves splitting the support and query samples into patches.
arXiv Detail & Related papers (2024-05-06T02:02:57Z) - Heuristic Vision Pre-Training with Self-Supervised and Supervised
Multi-Task Learning [0.0]
We propose a novel pre-training framework by adopting both self-supervised and supervised visual pre-text tasks in a multi-task manner.
Results show that our pre-trained models can deliver results on par with or better than state-of-the-art (SOTA) results on multiple visual tasks.
arXiv Detail & Related papers (2023-10-11T14:06:04Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception
Tasks? [51.22096780511165]
We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations.
We feed detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images.
arXiv Detail & Related papers (2023-06-01T14:02:45Z) - MULLER: Multilayer Laplacian Resizer for Vision [16.67232499096539]
We present an extremely lightweight multilayer Laplacian resizer with only a handful of trainable parameters, dubbed MULLER resizer.
We show that MULLER can be easily plugged into various training pipelines, and it effectively boosts the performance of the underlying vision task with little to no extra cost.
arXiv Detail & Related papers (2023-04-06T04:39:21Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers)
As an off-the-shelf method, it reduces the wall-time training cost of a wide variety of popular models by >1.5x on ImageNet-1K/22K without sacrificing accuracy.
arXiv Detail & Related papers (2022-11-17T17:38:55Z) - On Efficient Transformer and Image Pre-training for Low-level Vision [74.22436001426517]
Pre-training has marked numerous state of the arts in high-level computer vision.
We present an in-depth study of image pre-training.
We find pre-training plays strikingly different roles in low-level tasks.
arXiv Detail & Related papers (2021-12-19T15:50:48Z) - Automated Cleanup of the ImageNet Dataset by Model Consensus,
Explainability and Confident Learning [0.0]
ImageNet was the backbone of various convolutional neural networks (CNNs) trained on ILSVRC12Net.
This paper describes automated applications based on model consensus, explainability and confident learning to correct labeling mistakes.
The ImageNet-Clean improves the model performance by 2-2.4 % for SqueezeNet and EfficientNet-B0 models.
arXiv Detail & Related papers (2021-03-30T13:16:35Z) - Pre-Trained Image Processing Transformer [95.93031793337613]
We develop a new pre-trained model, namely, image processing transformer (IPT)
We present to utilize the well-known ImageNet benchmark for generating a large amount of corrupted image pairs.
IPT model is trained on these images with multi-heads and multi-tails.
arXiv Detail & Related papers (2020-12-01T09:42:46Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.