Experimental requirements for entangled two-photon spectroscopy
- URL: http://arxiv.org/abs/2103.10079v1
- Date: Thu, 18 Mar 2021 08:28:06 GMT
- Title: Experimental requirements for entangled two-photon spectroscopy
- Authors: Stefan Lerch and Andr\'e Stefanov
- Abstract summary: Entangled two-photon spectroscopy is expected to provide advantages compared with classical protocols.
We present here an experimental setup that allows the spectral shaping of entangled photons with high resolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entangled two-photon spectroscopy is expected to provide advantages compared
with classical protocols. It is achieved by coherently controlling the spectral
properties of energy-entangled photons. We present here an experimental setup
that allows the spectral shaping of entangled photons with high resolution. We
evaluate its performances by detecting sum frequency generation in a non-linear
crystal. The efficiency of the process is compared when performed with
classical or entangled light.
Related papers
- Limitations in Fluorescence-Detected Entangled Two-Photon-Absorption Experiments: Exploring the Low- to High-Gain Squeezing Regimes [0.0]
We study efforts to enable quantum-enhanced molecular spectroscopy and imaging at ultra-low optical flux.
Time-frequency photon entanglement does not provide a practical means to enhance in-solution molecular two-photon fluorescence spectroscopy or imaging.
arXiv Detail & Related papers (2024-04-25T05:36:47Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum interferometric two-photon excitation spectroscopy [7.708943730059219]
We present an approach for quantum interferometric two-photon excitation spectroscopy.
Our proposed protocol overcomes the difficulties of engineering two-photon joint spectral intensities and fine-tuned absorption-frequency selection.
Results may significantly facilitate the use of quantum interferometric spectroscopy for extracting the information about the electronic structure of the two-photon excited-state manifold of atoms or molecules.
arXiv Detail & Related papers (2021-11-23T15:44:08Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Bandwidth control of the biphoton wavefunction exploiting
spatio-temporal correlations [0.0]
We study how the waists of the detection and pump beams impact on the spectral bandwidth of the photons.
This allows for a simple experimental implementation to control the bandwidth of the biphoton spectra.
arXiv Detail & Related papers (2021-04-28T13:30:00Z) - On using classical light in Quantum Optical Coherence Tomography [0.0]
Quantum Optical Coherence Tomography provides an increased axial resolution and is immune to even orders of dispersion.
In this work, we investigate the use of this spectral approach in which quantum interference is obtained with classical low-intensity light pulses.
arXiv Detail & Related papers (2021-03-27T18:58:59Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Spectral characterization of photon-pair sources via classical
sum-frequency generation [0.0]
High-resolution spectral measurement is a key technique for engineering spectral properties of photons.
We demonstrate spectral measurements and optimization of frequency-entangled photon pairs produced via spontaneous parametric downconversion (SPDC)
A joint phase-matching spectrum of a nonlinear crystal around 1580 nm is captured with a 40 pm resolution and a > 40 dB signal-to-noise ratio.
arXiv Detail & Related papers (2020-10-15T11:52:12Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.