Learning Multimodal Affinities for Textual Editing in Images
- URL: http://arxiv.org/abs/2103.10139v1
- Date: Thu, 18 Mar 2021 10:09:57 GMT
- Title: Learning Multimodal Affinities for Textual Editing in Images
- Authors: Or Perel, Oron Anschel, Omri Ben-Eliezer, Shai Mazor, Hadar
Averbuch-Elor
- Abstract summary: We devise a generic unsupervised technique to learn multimodal affinities between textual entities in a document-image.
We then use these learned affinities to automatically cluster the textual entities in the image into different semantic groups.
We show that our technique can operate on highly varying images spanning a wide range of documents and demonstrate its applicability for various editing operations.
- Score: 18.7418059568887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, as cameras are rapidly adopted in our daily routine, images of
documents are becoming both abundant and prevalent. Unlike natural images that
capture physical objects, document-images contain a significant amount of text
with critical semantics and complicated layouts. In this work, we devise a
generic unsupervised technique to learn multimodal affinities between textual
entities in a document-image, considering their visual style, the content of
their underlying text and their geometric context within the image. We then use
these learned affinities to automatically cluster the textual entities in the
image into different semantic groups. The core of our approach is a deep
optimization scheme dedicated for an image provided by the user that detects
and leverages reliable pairwise connections in the multimodal representation of
the textual elements in order to properly learn the affinities. We show that
our technique can operate on highly varying images spanning a wide range of
documents and demonstrate its applicability for various editing operations
manipulating the content, appearance and geometry of the image.
Related papers
- Decoupled Textual Embeddings for Customized Image Generation [62.98933630971543]
Customized text-to-image generation aims to learn user-specified concepts with a few images.
Existing methods usually suffer from overfitting issues and entangle the subject-unrelated information with the learned concept.
We propose the DETEX, a novel approach that learns the disentangled concept embedding for flexible customized text-to-image generation.
arXiv Detail & Related papers (2023-12-19T03:32:10Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
Contrastively trained vision-language models have achieved remarkable progress in vision and language representation learning.
Recent research has highlighted severe limitations in their ability to perform compositional reasoning over objects, attributes, and relations.
arXiv Detail & Related papers (2023-05-23T08:28:38Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
Story visualization aims to generate a sequence of images to narrate each sentence in a multi-sentence story.
Current works face the problem of semantic misalignment because of their fixed architecture and diversity of input modalities.
We explore the semantic alignment between text and image representations by learning to match their semantic levels in the GAN-based generative model.
arXiv Detail & Related papers (2022-11-14T11:41:44Z) - NewsStories: Illustrating articles with visual summaries [49.924916589209374]
We introduce a large-scale multimodal dataset containing over 31M articles, 22M images and 1M videos.
We show that state-of-the-art image-text alignment methods are not robust to longer narratives with multiple images.
We introduce an intuitive baseline that outperforms these methods on zero-shot image-set retrieval by 10% on the GoodNews dataset.
arXiv Detail & Related papers (2022-07-26T17:34:11Z) - ARTEMIS: Attention-based Retrieval with Text-Explicit Matching and
Implicit Similarity [16.550790981646276]
Current approaches combine the features of each of the two elements of the query into a single representation.
Our work aims at shedding new light on the task by looking at it through the prism of two familiar and related frameworks: text-to-image and image-to-image retrieval.
arXiv Detail & Related papers (2022-03-15T17:29:20Z) - TediGAN: Text-Guided Diverse Face Image Generation and Manipulation [52.83401421019309]
TediGAN is a framework for multi-modal image generation and manipulation with textual descriptions.
StyleGAN inversion module maps real images to the latent space of a well-trained StyleGAN.
visual-linguistic similarity learns the text-image matching by mapping the image and text into a common embedding space.
instance-level optimization is for identity preservation in manipulation.
arXiv Detail & Related papers (2020-12-06T16:20:19Z) - Multi-Modal Reasoning Graph for Scene-Text Based Fine-Grained Image
Classification and Retrieval [8.317191999275536]
This paper focuses on leveraging multi-modal content in the form of visual and textual cues to tackle the task of fine-grained image classification and retrieval.
We employ a Graph Convolutional Network to perform multi-modal reasoning and obtain relationship-enhanced features by learning a common semantic space between salient objects and text found in an image.
arXiv Detail & Related papers (2020-09-21T12:31:42Z) - Text as Neural Operator: Image Manipulation by Text Instruction [68.53181621741632]
In this paper, we study a setting that allows users to edit an image with multiple objects using complex text instructions to add, remove, or change the objects.
The inputs of the task are multimodal including (1) a reference image and (2) an instruction in natural language that describes desired modifications to the image.
We show that the proposed model performs favorably against recent strong baselines on three public datasets.
arXiv Detail & Related papers (2020-08-11T07:07:10Z) - Fine-grained Image Classification and Retrieval by Combining Visual and
Locally Pooled Textual Features [8.317191999275536]
In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks.
In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities.
arXiv Detail & Related papers (2020-01-14T12:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.