Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services
- URL: http://arxiv.org/abs/2103.10277v1
- Date: Thu, 18 Mar 2021 14:18:34 GMT
- Title: Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services
- Authors: Sergio Martiradonna, Andrea Abrardo, Marco Moretti, Giuseppe Piro,
Gennaro Boggia
- Abstract summary: This paper presents a novel architecture that leverages Deep Reinforcement Learning at the edge of the network in order to address Radio Access Network Slicing and Radio Resource Management.
The effectiveness of our proposal against baseline methodologies is investigated through computer simulation, by considering an autonomous-driving use-case.
- Score: 10.718353079920007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The combination of cloud computing capabilities at the network edge and
artificial intelligence promise to turn future mobile networks into service-
and radio-aware entities, able to address the requirements of upcoming
latency-sensitive applications. In this context, a challenging research goal is
to exploit edge intelligence to dynamically and optimally manage the Radio
Access Network Slicing (that is a less mature and more complex technology than
fifth-generation Network Slicing) and Radio Resource Management, which is a
very complex task due to the mostly unpredictably nature of the wireless
channel. This paper presents a novel architecture that leverages Deep
Reinforcement Learning at the edge of the network in order to address Radio
Access Network Slicing and Radio Resource Management optimization supporting
latency-sensitive applications. The effectiveness of our proposal against
baseline methodologies is investigated through computer simulation, by
considering an autonomous-driving use-case.
Related papers
- WirelessAgent: Large Language Model Agents for Intelligent Wireless Networks [16.722524706176767]
Wireless networks are increasingly facing challenges due to their expanding scale and complexity.
These challenges underscore the need for advanced AI-driven strategies, particularly in the upcoming 6G networks.
We introduce WirelessAgent, a novel approach to develop AI agents capable of managing complex tasks in wireless networks.
arXiv Detail & Related papers (2024-09-12T11:48:01Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Cognitive Radio Network Throughput Maximization with Deep Reinforcement
Learning [58.44609538048923]
Radio Frequency powered Cognitive Radio Networks (RF-CRN) are likely to be the eyes and ears of upcoming modern networks such as Internet of Things (IoT)
To be considered autonomous, the RF-powered network entities need to make decisions locally to maximize the network throughput under the uncertainty of any network environment.
In this paper, deep reinforcement learning is proposed to overcome the shortcomings and allow a wireless gateway to derive an optimal policy to maximize network throughput.
arXiv Detail & Related papers (2020-07-07T01:49:07Z) - Communication-Efficient Edge AI Inference Over Wireless Networks [33.1306043471745]
We present the principles of efficient deployment of model inference at network edge to provide low-latency and energy-efficient AI services.
This includes the wireless distributed computing framework for low-latency device distributed model inference as well as the wireless cooperative transmission strategy for energy-efficient edge cooperative model inference.
arXiv Detail & Related papers (2020-04-28T08:04:06Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.