Addressing Hate Speech with Data Science: An Overview from Computer
Science Perspective
- URL: http://arxiv.org/abs/2103.10489v1
- Date: Thu, 18 Mar 2021 19:19:44 GMT
- Title: Addressing Hate Speech with Data Science: An Overview from Computer
Science Perspective
- Authors: Ivan Srba, Gabriele Lenzini, Matus Pikuliak, Samuel Pecar
- Abstract summary: From a computer science perspective, addressing on-line hate speech is a challenging task that is attracting the attention of both industry (mainly social media platform owners) and academia.
We provide an overview of state-of-the-art data-science approaches - how they define hate speech, which tasks they solve to mitigate the phenomenon, and how they address these tasks.
We summarize the challenges and the open problems in the current data-science research and the future directions in this field.
- Score: 2.2940141855172027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: From a computer science perspective, addressing on-line hate speech is a
challenging task that is attracting the attention of both industry (mainly
social media platform owners) and academia. In this chapter, we provide an
overview of state-of-the-art data-science approaches - how they define hate
speech, which tasks they solve to mitigate the phenomenon, and how they address
these tasks. We limit our investigation mostly to (semi-)automatic detection of
hate speech, which is the task that the majority of existing computer science
works focus on. Finally, we summarize the challenges and the open problems in
the current data-science research and the future directions in this field. Our
aim is to prepare an easily understandable report, capable to promote the
multidisciplinary character of hate speech research. Researchers from other
domains (e.g., psychology and sociology) can thus take advantage of the
knowledge achieved in the computer science domain but also contribute back and
help improve how computer science is addressing that urgent and socially
relevant issue which is the prevalence of hate speech in social media.
Related papers
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - Topological Data Mapping of Online Hate Speech, Misinformation, and
General Mental Health: A Large Language Model Based Study [6.803493330690884]
Recent advances in machine learning and large language models have made such an analysis possible.
In this study, we collected thousands of posts from carefully selected communities on the social media site Reddit.
We performed various machine-learning classifications based on embeddings in order to understand the role of hate speech/misinformation in various communities.
arXiv Detail & Related papers (2023-09-22T15:10:36Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Qualitative Analysis of a Graph Transformer Approach to Addressing Hate
Speech: Adapting to Dynamically Changing Content [8.393770595114763]
We offer a detailed qualitative analysis of this solution for hate speech detection in social networks.
A key insight is that the focus on reasoning about the concept of context positions us well to be able to support multi-modal analysis of online posts.
We conclude with a reflection on how the problem we are addressing relates especially well to the theme of dynamic change.
arXiv Detail & Related papers (2023-01-25T23:32:32Z) - Coordinated Science Laboratory 70th Anniversary Symposium: The Future of
Computing [80.72844751804166]
In 2021, the Coordinated Science Laboratory CSL hosted the Future of Computing Symposium to celebrate its 70th anniversary.
We summarize the major technological points, insights, and directions that speakers brought forward during the symposium.
Participants discussed topics related to new computing paradigms, technologies, algorithms, behaviors, and research challenges to be expected in the future.
arXiv Detail & Related papers (2022-10-04T17:32:27Z) - A Review of Challenges in Machine Learning based Automated Hate Speech
Detection [0.966840768820136]
We focus on challenges faced by machine learning or deep learning based solutions to hate speech identification.
At the top level, we distinguish between data level, model level, and human level challenges.
This survey will help researchers to design their solutions more efficiently in the domain of hate speech detection.
arXiv Detail & Related papers (2022-09-12T14:56:14Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Analysis of Online Toxicity Detection Using Machine Learning Approaches [6.548580592686076]
Social media and the internet have become an integral part of how people spread and consume information.
Almost half of the population is using social media to express their views and opinions.
Online hate speech is one of the drawbacks of social media nowadays, which needs to be controlled.
arXiv Detail & Related papers (2021-04-23T04:29:13Z) - DeepHate: Hate Speech Detection via Multi-Faceted Text Representations [8.192671048046687]
DeepHate is a novel deep learning model that combines multi-faceted text representations such as word embeddings, sentiments, and topical information.
We conduct extensive experiments and evaluate DeepHate on three large publicly available real-world datasets.
arXiv Detail & Related papers (2021-03-14T16:11:30Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
disinformation including fake news has become a global phenomenon due to its explosive growth.
Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation.
arXiv Detail & Related papers (2020-01-02T21:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.