Damping of macroscopic oscillation and interference pattern in coupled
Gross-Pitaevskii equations without self-interaction
- URL: http://arxiv.org/abs/2103.10759v1
- Date: Fri, 19 Mar 2021 12:04:50 GMT
- Title: Damping of macroscopic oscillation and interference pattern in coupled
Gross-Pitaevskii equations without self-interaction
- Authors: Hidetsugu Sakaguchi and Fumihide Hirano
- Abstract summary: Quantum phenomena appear in a macroscopic scale in Bose-Einstein condensates.
The Gross-Pitaevskii equation describes the dynamics of the weakly interacting condensates.
We show that the macroscopic oscillation and the interference of two quantum wave packets decay in time owing to mutual interaction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum phenomena appear in a macroscopic scale in Bose-Einstein condensates.
The Gross-Pitaevskii (GP) equation describes the dynamics of the weakly
interacting Bose-Einstein condensates. The GP equation has a form of the
Schroedinger equation with self-interaction. The coupled Gross-Pitaevskii
equations are used to describe some mixtures of Bose-Einstein condensates. In
this paper, we will show some numerical results of coupled Gross-Pitaevskii
equations without self-interaction, which has a form of nonlinearly-coupled
Schroedinger equations. We demonstrate that the macroscopic oscillation and the
interference of two quantum wave packets decay in time owing to mutual
interaction, which is analogous to the decoherence in quantum mechanics of many
particles.
Related papers
- Solving coupled Non-linear Schrödinger Equations via Quantum Imaginary Time Evolution [0.0]
We present a quantum imaginary time evolution (ITE) algorithm as a solution to such equations in the case of nuclear Hartree-Fock equations.
Under a simplified Skyrme interaction model, we calculate the ground state energy of an oxygen-16 nucleus and demonstrate that the result is in agreement with the classical ITE algorithm.
arXiv Detail & Related papers (2024-02-02T18:41:04Z) - The p-Adic Schrödinger Equation and the Two-slit Experiment in Quantum Mechanics [0.0]
p-Adic quantum mechanics is constructed from the Dirac-von Neumann axioms.
The p-adic quantum mechanics is motivated by the question: what happens with the standard quantum mechanics if the space has a discrete nature?
arXiv Detail & Related papers (2023-08-02T17:10:10Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Loschmidt echo and Poincar\'e recurrences of entanglement [0.0]
We study the properties of entanglement of two interacting, or noninteracting, particles evolving in a regime of quantum chaos in the quantum Chirikov standard map.
The obtained results show unusual features of the entropy of entanglement and the spectrum of Schmidt decomposition with their dependence on interactions at different quantum chaos regimes.
arXiv Detail & Related papers (2022-01-07T18:51:31Z) - Classical analog of qubit logic based on a magnon Bose-Einstein
condensate [52.77024349608834]
We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate.
The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit.
arXiv Detail & Related papers (2021-11-12T16:14:46Z) - Classical and Quantum Brownian Motion [0.0]
In quantum mechanics electrons and other point particles are no waves and the chapter of quantum mechanics originated for the force carriers.
A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment.
Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed.
arXiv Detail & Related papers (2021-05-12T13:24:39Z) - Schrodinger's Equation is Universal, Dark Matter and Double Diffusion [0.0]
This paper considers a main particle and an incident particle classical mechanics elastic collision preserving energy and momentum.
The main result of the paper shows that the colliding two particle classical Hamiltonian energy can be represented in four weighted individual particle.
The Schrodinger equation can also be used to represent corrections for Newton's equation and suggests a user profile to be used in the search for Dark Matter.
arXiv Detail & Related papers (2021-05-05T11:02:37Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.