AdaptSum: Towards Low-Resource Domain Adaptation for Abstractive
Summarization
- URL: http://arxiv.org/abs/2103.11332v1
- Date: Sun, 21 Mar 2021 08:12:19 GMT
- Title: AdaptSum: Towards Low-Resource Domain Adaptation for Abstractive
Summarization
- Authors: Tiezheng Yu, Zihan Liu, Pascale Fung
- Abstract summary: We present a study of domain adaptation for the abstractive summarization task across six diverse target domains in a low-resource setting.
Experiments show that the effectiveness of pre-training is correlated with the similarity between the pre-training data and the target domain task.
- Score: 43.024669990477214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art abstractive summarization models generally rely on extensive
labeled data, which lowers their generalization ability on domains where such
data are not available. In this paper, we present a study of domain adaptation
for the abstractive summarization task across six diverse target domains in a
low-resource setting. Specifically, we investigate the second phase of
pre-training on large-scale generative models under three different settings:
1) source domain pre-training; 2) domain-adaptive pre-training; and 3)
task-adaptive pre-training. Experiments show that the effectiveness of
pre-training is correlated with the similarity between the pre-training data
and the target domain task. Moreover, we find that continuing pre-training
could lead to the pre-trained model's catastrophic forgetting, and a learning
method with less forgetting can alleviate this issue. Furthermore, results
illustrate that a huge gap still exists between the low-resource and
high-resource settings, which highlights the need for more advanced domain
adaptation methods for the abstractive summarization task.
Related papers
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
Unsupervised domain adaptation (UDA) has become increasingly prevalent in scene text recognition (STR)
We introduce the Stratified Domain Adaptation (StrDA) approach, which examines the gradual escalation of the domain gap for the learning process.
We propose a novel method for employing domain discriminators to estimate the out-of-distribution and domain discriminative levels of data samples.
arXiv Detail & Related papers (2024-10-13T16:40:48Z) - Prior-guided Source-free Domain Adaptation for Human Pose Estimation [24.50953879583841]
Domain adaptation methods for 2D human pose estimation typically require continuous access to the source data.
We present Prior-guided Self-training (POST), a pseudo-labeling approach that builds on the popular Mean Teacher framework.
arXiv Detail & Related papers (2023-08-26T20:30:04Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Domain Adaptation in LiDAR Semantic Segmentation by Aligning Class
Distributions [9.581605678437032]
This work addresses the problem of unsupervised domain adaptation for LiDAR semantic segmentation models.
Our approach combines novel ideas on top of the current state-of-the-art approaches and yields new state-of-the-art results.
arXiv Detail & Related papers (2020-10-23T08:52:15Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Adversarial Weighting for Domain Adaptation in Regression [4.34858896385326]
We present a novel instance-based approach to handle regression tasks in the context of supervised domain adaptation.
We develop an adversarial network algorithm which learns both the source weighting scheme and the task in one feed-forward gradient descent.
arXiv Detail & Related papers (2020-06-15T09:44:04Z) - Don't Stop Pretraining: Adapt Language Models to Domains and Tasks [81.99843216550306]
We present a study across four domains (biomedical and computer science publications, news, and reviews) and eight classification tasks.
A second phase of pretraining in-domain (domain-adaptive pretraining) leads to performance gains.
Adapting to the task's unlabeled data (task-adaptive pretraining) improves performance even after domain-adaptive pretraining.
arXiv Detail & Related papers (2020-04-23T04:21:19Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.