Noisy atomic magnetometry in real time
- URL: http://arxiv.org/abs/2103.12025v3
- Date: Wed, 8 Dec 2021 15:43:34 GMT
- Title: Noisy atomic magnetometry in real time
- Authors: Julia Amoros-Binefa and Jan Kolodynski
- Abstract summary: Continuously monitored atomic spin-ensembles allow, in principle, for real-time sensing of external magnetic fields.
We study how conclusions based on Kalman filtering methods change when inevitable imperfections are taken into account.
We prove that even an infinitesimal amount of noise disallows the error to be arbitrarily diminished.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuously monitored atomic spin-ensembles allow, in principle, for
real-time sensing of external magnetic fields beyond classical limits. Within
the linear-Gaussian regime, thanks to the phenomenon of measurement-induced
spin-squeezing, they attain a quantum-enhanced scaling of sensitivity both as a
function of time, $t$, and the number of atoms involved, $N$. In our work, we
rigorously study how such conclusions based on Kalman filtering methods change
when inevitable imperfections are taken into account: in the form of collective
noise, as well as stochastic fluctuations of the field in time. We prove that
even an infinitesimal amount of noise disallows the error to be arbitrarily
diminished by simply increasing $N$, and forces it to eventually follow a
classical-like behaviour in $t$. However, we also demonstrate that, "thanks" to
the presence of noise, in most regimes the model based on a homodyne-like
continuous measurement actually achieves the ultimate sensitivity allowed by
the decoherence, yielding then the optimal quantum-enhancement. We are able to
do so by constructing a noise-induced lower bound on the error that stems from
a general method of classically simulating a noisy quantum evolution, during
which the stochastic parameter to be estimated -- here, the magnetic field --
is encoded. The method naturally extends to schemes beyond the linear-Gaussian
regime, in particular, also to ones involving feedback or active control.
Related papers
- Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Noisy atomic magnetometry with Kalman filtering and measurement-based feedback [0.0]
We propose a comprehensive approach that integrates measurement, estimation and control strategies.
This involves implementing a quantum non-demolition measurement based on continuous light-probing of the atomic ensemble.
Thanks to the feedback proposed, the atoms exhibit entanglement even when the measurement data is discarded.
arXiv Detail & Related papers (2024-03-21T18:11:09Z) - Robustness of chaotic behavior in iterated quantum protocols [0.0]
A quantum circuit with a Hadamard gate and a measurement on one of the outputs is known to lead to chaotic dynamics when applied iteratively on an ensemble of equally prepared qubits.
We examine how the ideal evolution is distorted in the presence of both coherent error and incoherent initial noise.
Our results allow to identify reliable regimes of operation of iterative protocols.
arXiv Detail & Related papers (2023-11-22T09:59:32Z) - Quantum simulation of lattice gauge theories via deterministic duality transformations assisted by measurements [0.0]
lattice gauge theories are likely limited due to the violation of the Gauss law constraint and the complexity of the real-time dynamics.
We propose to simulate dynamics of lattice gauge theories by using the Kramers-Wannier transfomation via cluster-state-like entanglers.
We give explicit examples with the low dimensional pure gauge theories and gauge theories coupled to bosonic/fermionic matters.
arXiv Detail & Related papers (2023-05-20T20:28:02Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Dynamical singularity of the rate function for quench dynamics in
finite-size quantum systems [1.2514666672776884]
We study the realization of the dynamical singularity of the rate function for finite-size systems under the twist boundary condition.
We show that exact zeros of the Loschmidt echo can be always achieved when the postquench parameter is across the underlying equilibrium phase transition point.
arXiv Detail & Related papers (2022-11-06T14:35:57Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.