Global Correlation Network: End-to-End Joint Multi-Object Detection and
Tracking
- URL: http://arxiv.org/abs/2103.12511v1
- Date: Tue, 23 Mar 2021 13:16:42 GMT
- Title: Global Correlation Network: End-to-End Joint Multi-Object Detection and
Tracking
- Authors: Xuewu Lin, Yu-ang Guo, Jianqiang Wang
- Abstract summary: We present a novel network to realize joint multi-object detection and tracking in an end-to-end way, called Global Correlation Network (GCNet)
GCNet introduces the global correlation layer for regression of absolute size and coordinates of bounding boxes instead of offsets prediction.
The pipeline of detection and tracking by GCNet is conceptually simple, which does not need non-maximum suppression, data association, and other complicated tracking strategies.
- Score: 2.749204052800622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-object tracking (MOT) has made great progress in recent years, but
there are still some problems. Most MOT algorithms follow tracking-by-detection
framework, which separates detection and tracking into two independent parts.
Early tracking-by-detection algorithms need to do two feature extractions for
detection and tracking. Recently, some algorithms make the feature extraction
into one network, but the tracking part still relies on data association and
needs complex post-processing for life cycle management. Those methods do not
combine detection and tracking well. In this paper, we present a novel network
to realize joint multi-object detection and tracking in an end-to-end way,
called Global Correlation Network (GCNet). Different from most object detection
methods, GCNet introduces the global correlation layer for regression of
absolute size and coordinates of bounding boxes instead of offsets prediction.
The pipeline of detection and tracking by GCNet is conceptually simple, which
does not need non-maximum suppression, data association, and other complicated
tracking strategies. GCNet was evaluated on a multi-vehicle tracking dataset,
UA-DETRAC, and demonstrates promising performance compared to the
state-of-the-art detectors and trackers.
Related papers
- ADA-Track: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association [15.161640917854363]
We introduce ADA-Track, a novel end-to-end framework for 3D MOT from multi-view cameras.
We introduce a learnable data association module based on edge-augmented cross-attention.
We integrate this association module into the decoder layer of a DETR-based 3D detector.
arXiv Detail & Related papers (2024-05-14T19:02:33Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Minkowski Tracker: A Sparse Spatio-Temporal R-CNN for Joint Object
Detection and Tracking [53.64390261936975]
We present Minkowski Tracker, a sparse-temporal R-CNN that jointly solves object detection and tracking problems.
Inspired by region-based CNN (R-CNN), we propose to track motion as a second stage of the object detector R-CNN.
We show in large-scale experiments that the overall performance gain of our method is due to four factors.
arXiv Detail & Related papers (2022-08-22T04:47:40Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - Tracking by Joint Local and Global Search: A Target-aware Attention
based Approach [63.50045332644818]
We propose a novel target-aware attention mechanism (termed TANet) to conduct joint local and global search for robust tracking.
Specifically, we extract the features of target object patch and continuous video frames, then we track and feed them into a decoder network to generate target-aware global attention maps.
In the tracking procedure, we integrate the target-aware attention with multiple trackers by exploring candidate search regions for robust tracking.
arXiv Detail & Related papers (2021-06-09T06:54:15Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Chained-Tracker: Chaining Paired Attentive Regression Results for
End-to-End Joint Multiple-Object Detection and Tracking [102.31092931373232]
We propose a simple online model named Chained-Tracker (CTracker), which naturally integrates all the three subtasks into an end-to-end solution.
The two major novelties: chained structure and paired attentive regression, make CTracker simple, fast and effective.
arXiv Detail & Related papers (2020-07-29T02:38:49Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.