ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning
- URL: http://arxiv.org/abs/2103.12607v1
- Date: Tue, 23 Mar 2021 15:04:44 GMT
- Title: ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning
- Authors: Oliver Lutz and Huili Chen and Hossein Fereidooni and Christoph
Sendner and Alexandra Dmitrienko and Ahmad Reza Sadeghi and Farinaz
Koushanfar
- Abstract summary: Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
- Score: 80.85273827468063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ethereum smart contracts are automated decentralized applications on the
blockchain that describe the terms of the agreement between buyers and sellers,
reducing the need for trusted intermediaries and arbitration. However, the
deployment of smart contracts introduces new attack vectors into the
cryptocurrency systems. In particular, programming flaws in smart contracts can
be and have already been exploited to gain enormous financial profits. It is
thus an emerging yet crucial issue to detect vulnerabilities of different
classes in contracts in an efficient manner. Existing machine learning-based
vulnerability detection methods are limited and only inspect whether the smart
contract is vulnerable, or train individual classifiers for each specific
vulnerability, or demonstrate multi-class vulnerability detection without
extensibility consideration. To overcome the scalability and generalization
limitations of existing works, we propose ESCORT, the first Deep Neural Network
(DNN)-based vulnerability detection framework for Ethereum smart contracts that
support lightweight transfer learning on unseen security vulnerabilities, thus
is extensible and generalizable. ESCORT leverages a multi-output NN
architecture that consists of two parts: (i) A common feature extractor that
learns the semantics of the input contract; (ii) Multiple branch structures
where each branch learns a specific vulnerability type based on features
obtained from the feature extractor. Experimental results show that ESCORT
achieves an average F1-score of 95% on six vulnerability types and the
detection time is 0.02 seconds per contract. When extended to new vulnerability
types, ESCORT yields an average F1-score of 93%. To the best of our knowledge,
ESCORT is the first framework that enables transfer learning on new
vulnerability types with minimal modification of the DNN model architecture and
re-training overhead.
Related papers
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
We propose a Dual-view Aware Smart Contract Vulnerability Detection Framework named DVDet.
The framework initially converts the source code and bytecode of smart contracts into weighted graphs and control flow sequences.
Comprehensive experiments on the dataset show that our method outperforms others in detecting vulnerabilities.
arXiv Detail & Related papers (2024-06-29T06:47:51Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Two Timin': Repairing Smart Contracts With A Two-Layered Approach [3.2154249558826846]
This paper proposes a novel, two-layered framework for classifying and repairing smart contracts.
Slither's vulnerability report is combined with source code and passed through a pre-trained RandomForestClassifier (RFC) and Large Language Models (LLMs)
Experiments demonstrate the effectiveness of fine-tuned and prompt-engineered LLMs.
arXiv Detail & Related papers (2023-09-14T16:37:23Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - An Automated Vulnerability Detection Framework for Smart Contracts [18.758795474791427]
We propose a framework to automatically detect vulnerabilities in smart contracts on the blockchain.
More specifically, first, we utilize novel feature vector generation techniques from bytecode of smart contract.
Next, the collected vectors are fed into our novel metric learning-based deep neural network(DNN) to get the detection result.
arXiv Detail & Related papers (2023-01-20T23:16:04Z) - SmartIntentNN: Towards Smart Contract Intent Detection [5.9789082082171525]
We introduce textscSmartIntentNN (Smart Contract Intent Neural Network), a deep learning-based tool designed to automate the detection of developers' intent in smart contracts.
Our approach integrates a Universal Sentence for contextual representation of smart contract code, and employs a K-means clustering algorithm to highlight intent-related code features.
Evaluations on 10,000 real-world smart contracts demonstrate that textscSmartIntentNN surpasses all baselines, achieving an F1-score of 0.8633.
arXiv Detail & Related papers (2022-11-24T15:36:35Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - CRFL: Certifiably Robust Federated Learning against Backdoor Attacks [59.61565692464579]
This paper provides the first general framework, Certifiably Robust Federated Learning (CRFL), to train certifiably robust FL models against backdoors.
Our method exploits clipping and smoothing on model parameters to control the global model smoothness, which yields a sample-wise robustness certification on backdoors with limited magnitude.
arXiv Detail & Related papers (2021-06-15T16:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.