Ultralow threshold bistability and generation of long-lived mode in a
dissipatively coupled nonlinear system: application to magnonics
- URL: http://arxiv.org/abs/2103.12861v1
- Date: Tue, 23 Mar 2021 21:48:17 GMT
- Title: Ultralow threshold bistability and generation of long-lived mode in a
dissipatively coupled nonlinear system: application to magnonics
- Authors: Jayakrishnan M. P. Nair, Debsuvra Mukhopadhyay, Girish S. Agarwal
- Abstract summary: We study the remote transfer of bistability from a nonlinear resource in a dissipatively coupled two-mode system.
As a consequence of dissipative coupling and the nonlinearity, a long-lived mode emerges, which is responsible for heightened transmission levels and pronounced sensitivity in signal propagation through the fiber.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prospect of a system possessing two or more stable states for a given
excitation condition is of topical interest with applications in information
processing networks. In this work, we establish the remote transfer of
bistability from a nonlinear resource in a dissipatively coupled two-mode
system. As a clear advantage over coherently coupled settings, the dissipative
nature of interaction is found to support a lower pumping threshold for
bistable signals. For comparable parameters, the bistability threshold for
dissipatively coupled systems is lower by a factor of about five. The resulting
hysteresis can be studied spectroscopically by applying a probe field through
the waveguide and examining the polariton character of the transmitted field.
Our model is generic, apropos of an extensive set of quantum systems, and we
demonstrate our results in the context of magnonics where experimental interest
has flourished of late. As a consequence of dissipative coupling and the
nonlinearity, a long-lived mode emerges, which is responsible for heightened
transmission levels and pronounced sensitivity in signal propagation through
the fiber.
Related papers
- Interplay between external driving, dissipation and collective effects in the Markovian and non-Markovian regimes [0.0]
The present study investigates open system phenomena in driven optical systems coupled simultaneously to a bosonic field.
For a linear system of micro-cavities coupled to a photonic crystal, it is analytically shown that environmental interaction and external control cause significant non-Markovian corrections to the applied coherent drive.
The influence of the non-linearity is analyzed and benchmarked against an exact pseudo-mode solution, and compared with established master equations in the Markovian regime.
arXiv Detail & Related papers (2024-10-04T10:18:55Z) - Wigner-negative states in the steady-state emission of a two-level system driven by squeezed light [0.0]
Propagating modes of light with negative-valued Wigner distributions are of fundamental interest in quantum optics.
We show the possibility of deterministic generation of Wigner-negativity in temporal modes of the steady-state emission of a two-level system driven by finite-bandwidth quadrature-squeezed light.
arXiv Detail & Related papers (2024-08-03T07:39:46Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Linear and Non-Linear Response of Quadratic Lindbladians [0.0]
Quadratic Lindbladians encompass a rich class of dissipative electronic and bosonic quantum systems.
We develop a Lindblad-Keldysh response formalism for open quantum systems that elucidates their steady-state response properties.
arXiv Detail & Related papers (2024-02-09T18:12:15Z) - Efficient decoupling of a non-linear qubit mode from its environment [0.9533143628888118]
We make use of the design flexibility of superconducting quantum circuits to form a multi-mode element with symmetry-protected modes.
The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions.
We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator.
arXiv Detail & Related papers (2023-12-28T12:16:29Z) - Machine Learning Extreme Acoustic Non-reciprocity in a Linear Waveguide
with Multiple Nonlinear Asymmetric Gates [68.8204255655161]
This work is a study of acoustic non-reciprocity exhibited by a passive one-dimensional linear waveguide incorporating two local strongly nonlinear, asymmetric gates.
The maximum transmissibility reaches as much as 40%, and the transmitted energy from upstream to downstream varies up to nine orders of magnitude, depending on the direction of wave propagation.
arXiv Detail & Related papers (2023-02-02T17:28:04Z) - Nonlocal nonreciprocal optomechanical circulator [2.099922236065961]
A nonlocal circulator protocol is proposed in hybrid optomechanical system.
We establish the quantum channel between two optical modes with long-range.
arXiv Detail & Related papers (2021-12-18T13:50:58Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.