Industrial Machine Tool Component Surface Defect Dataset
- URL: http://arxiv.org/abs/2103.13003v1
- Date: Wed, 24 Mar 2021 06:17:21 GMT
- Title: Industrial Machine Tool Component Surface Defect Dataset
- Authors: Tobias Schlagenhauf, Magnus Landwehr, Juergen Fleischer
- Abstract summary: Using machine learning (ML) techniques in general and deep learning techniques in specific needs a certain amount of data.
The manual inspection of machine tool components and the manual end-of-line check of products are labor-intensive tasks.
One needs real-world datasets to train and test the models.
- Score: 0.3170655320696991
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Using machine learning (ML) techniques in general and deep learning
techniques in specific needs a certain amount of data often not available in
large quantities in technical domains. The manual inspection of machine tool
components and the manual end-of-line check of products are labor-intensive
tasks in industrial applications that companies often want to automate. To
automate classification processes and develop reliable and robust machine
learning-based classification and wear prognostics models, one needs real-world
datasets to train and test the models. The dataset is available under
https://doi.org/10.5445/IR/1000129520.
Related papers
- Automated data processing and feature engineering for deep learning and big data applications: a survey [0.0]
Modern approach to artificial intelligence (AI) aims to design algorithms that learn directly from data.
Not all data processing tasks in conventional deep learning pipelines have been automated.
arXiv Detail & Related papers (2024-03-18T01:07:48Z) - CLASSify: A Web-Based Tool for Machine Learning [0.0]
This article presents an automated tool for machine learning classification problems to simplify the process of training models and producing results while providing informative visualizations and insights into the data.
We present CLASSify, an open-source tool for solving classification problems without the need for knowledge of machine learning.
arXiv Detail & Related papers (2023-10-05T15:51:36Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Man versus Machine: AutoML and Human Experts' Role in Phishing Detection [4.124446337711138]
This paper compares the performances of six well-known, state-of-the-art AutoML frameworks on ten different phishing datasets.
Our results indicate that AutoML-based models are able to outperform manually developed machine learning models in complex classification tasks.
arXiv Detail & Related papers (2021-08-27T09:26:20Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - AutoML to Date and Beyond: Challenges and Opportunities [30.60364966752454]
AutoML tools aim to make machine learning accessible for non-machine learning experts.
We introduce a new classification system for AutoML systems.
We lay out a roadmap for the future, pinpointing the research required to further automate the end-to-end machine learning pipeline.
arXiv Detail & Related papers (2020-10-21T06:08:21Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.