Adversarial Feature Stacking for Accurate and Robust Predictions
- URL: http://arxiv.org/abs/2103.13124v1
- Date: Wed, 24 Mar 2021 12:01:24 GMT
- Title: Adversarial Feature Stacking for Accurate and Robust Predictions
- Authors: Faqiang Liu, Rong Zhao, Luping Shi
- Abstract summary: Adversarial Feature Stacking (AFS) model can jointly take advantage of features with varied levels of robustness and accuracy.
We evaluate the AFS model on CIFAR-10 and CIFAR-100 datasets with strong adaptive attack methods.
- Score: 4.208059346198116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) have achieved remarkable performance on a variety
of applications but are extremely vulnerable to adversarial perturbation. To
address this issue, various defense methods have been proposed to enhance model
robustness. Unfortunately, the most representative and promising methods, such
as adversarial training and its variants, usually degrade model accuracy on
benign samples, limiting practical utility. This indicates that it is difficult
to extract both robust and accurate features using a single network under
certain conditions, such as limited training data, resulting in a trade-off
between accuracy and robustness. To tackle this problem, we propose an
Adversarial Feature Stacking (AFS) model that can jointly take advantage of
features with varied levels of robustness and accuracy, thus significantly
alleviating the aforementioned trade-off. Specifically, we adopt multiple
networks adversarially trained with different perturbation budgets to extract
either more robust features or more accurate features. These features are then
fused by a learnable merger to give final predictions. We evaluate the AFS
model on CIFAR-10 and CIFAR-100 datasets with strong adaptive attack methods,
which significantly advances the state-of-the-art in terms of the trade-off.
Without extra training data, the AFS model achieves a benign accuracy
improvement of 6% on CIFAR-10 and 9% on CIFAR-100 with comparable or even
stronger robustness than the state-of-the-art adversarial training methods.
This work demonstrates the feasibility to obtain both accurate and robust
models under the circumstances of limited training data.
Related papers
- A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models [9.304845676825584]
We propose a novel adversarial training framework that integrates multiple attack strategies and advanced machine learning techniques.
Experiments conducted on real-world datasets, including CIFAR-10 and CIFAR-100, demonstrate that the proposed method significantly enhances model robustness.
arXiv Detail & Related papers (2024-10-18T23:47:46Z) - Adversarial Feature Alignment: Balancing Robustness and Accuracy in Deep
Learning via Adversarial Training [10.099179580467737]
Adversarial training is used to mitigate this problem by increasing robustness against adversarial attacks.
This approach typically reduces a model's standard accuracy on clean, non-adversarial samples.
This paper proposes a novel adversarial training method called Adversarial Feature Alignment (AFA) to address these problems.
arXiv Detail & Related papers (2024-02-19T14:51:20Z) - MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers [41.56951365163419]
"MixedNUTS" is a training-free method where the output logits of a robust classifier are processed by nonlinear transformations with only three parameters.
MixedNUTS then converts the transformed logits into probabilities and mixes them as the overall output.
On CIFAR-10, CIFAR-100, and ImageNet datasets, experimental results with custom strong adaptive attacks demonstrate MixedNUTS's vastly improved accuracy and near-SOTA robustness.
arXiv Detail & Related papers (2024-02-03T21:12:36Z) - Reducing Adversarial Training Cost with Gradient Approximation [0.3916094706589679]
We propose a new and efficient adversarial training method, adversarial training with gradient approximation (GAAT) to reduce the cost of building up robust models.
Our proposed method saves up to 60% of the training time with comparable model test accuracy on datasets.
arXiv Detail & Related papers (2023-09-18T03:55:41Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Mutual Adversarial Training: Learning together is better than going
alone [82.78852509965547]
We study how interactions among models affect robustness via knowledge distillation.
We propose mutual adversarial training (MAT) in which multiple models are trained together.
MAT can effectively improve model robustness and outperform state-of-the-art methods under white-box attacks.
arXiv Detail & Related papers (2021-12-09T15:59:42Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Adversarial Training with Rectified Rejection [114.83821848791206]
We propose to use true confidence (T-Con) as a certainty oracle, and learn to predict T-Con by rectifying confidence.
We prove that under mild conditions, a rectified confidence (R-Con) rejector and a confidence rejector can be coupled to distinguish any wrongly classified input from correctly classified ones.
arXiv Detail & Related papers (2021-05-31T08:24:53Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z) - To be Robust or to be Fair: Towards Fairness in Adversarial Training [83.42241071662897]
We find that adversarial training algorithms tend to introduce severe disparity of accuracy and robustness between different groups of data.
We propose a Fair-Robust-Learning (FRL) framework to mitigate this unfairness problem when doing adversarial defenses.
arXiv Detail & Related papers (2020-10-13T02:21:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.