Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization
- URL: http://arxiv.org/abs/2103.13125v1
- Date: Wed, 24 Mar 2021 12:06:12 GMT
- Title: Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization
- Authors: Chenguang Wang and Ziwen Liu
- Abstract summary: We introduce a self-supervised learning method to enhance the representations of graph-level learned by Graph Neural Networks.
To get a comprehensive understanding of the graph structure, we propose an ensemble-learning like subgraph method.
And to achieve efficient and effective contrasive learning, a Head-Tail contrastive samples construction method is proposed.
- Score: 5.419711903307341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks have shown tremendous potential on dealing with garph
data and achieved outstanding results in recent years. In some research areas,
labelling data are hard to obtain for technical reasons, which necessitates the
study of unsupervised and semi-superivsed learning on graphs. Therefore,
whether the learned representations can capture the intrinsic feature of the
original graphs will be the issue in this area. In this paper, we introduce a
self-supervised learning method to enhance the representations of graph-level
learned by Graph Neural Networks. To fully capture the original attributes of
the graph, we use three information aggregators: attribute-conv, layer-conv and
subgraph-conv to gather information from different aspects. To get a
comprehensive understanding of the graph structure, we propose an
ensemble-learning like subgraph method. And to achieve efficient and effective
contrasive learning, a Head-Tail contrastive samples construction method is
proposed to provide more abundant negative samples. By virtue of all proposed
components which can be generalized to any Graph Neural Networks, in
unsupervised case, we achieve new state of the art results in several
benchmarks. We also evaluate our model on semi-supervised learning tasks and
make a fair comparison to state of the art semi-supervised methods.
Related papers
- Knowledge Probing for Graph Representation Learning [12.960185655357495]
We propose a novel graph probing framework (GraphProbe) to investigate and interpret whether the family of graph learning methods has encoded different levels of knowledge in graph representation learning.
Based on the intrinsic properties of graphs, we design three probes to systematically investigate the graph representation learning process from different perspectives.
We construct a thorough evaluation benchmark with nine representative graph learning methods from random walk based approaches, basic graph neural networks and self-supervised graph methods, and probe them on six benchmark datasets for node classification, link prediction and graph classification.
arXiv Detail & Related papers (2024-08-07T16:27:45Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - ARIEL: Adversarial Graph Contrastive Learning [51.14695794459399]
ARIEL consistently outperforms the current graph contrastive learning methods for both node-level and graph-level classification tasks.
ARIEL is more robust in the face of adversarial attacks.
arXiv Detail & Related papers (2022-08-15T01:24:42Z) - Cross-view Self-Supervised Learning on Heterogeneous Graph Neural
Network via Bootstrapping [0.0]
Heterogeneous graph neural networks can represent information of heterogeneous graphs with excellent ability.
In this paper, we introduce a that can generate good representations without generating large number of pairs.
The proposed model showed state-of-the-art performance than other methods in various real world datasets.
arXiv Detail & Related papers (2022-01-10T13:36:05Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
We propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs.
The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity.
Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.
arXiv Detail & Related papers (2021-07-06T14:24:43Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.