IMU Data Processing For Inertial Aided Navigation: A Recurrent Neural
Network Based Approach
- URL: http://arxiv.org/abs/2103.14286v1
- Date: Fri, 26 Mar 2021 06:21:37 GMT
- Title: IMU Data Processing For Inertial Aided Navigation: A Recurrent Neural
Network Based Approach
- Authors: Ming Zhang, Mingming Zhang, Yiming Chen, Mingyang Li
- Abstract summary: We propose a novel method for performing inertial aided navigation, by using deep neural networks (DNNs)
We perform detailed analysis on the motion terms in IMU kinematic equations, propose a dedicated network design, loss functions, and training strategies for the IMU data processing.
- Score: 8.638738538496778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a novel method for performing inertial aided
navigation, by using deep neural networks (DNNs). To date, most DNN inertial
navigation methods focus on the task of inertial odometry, by taking gyroscope
and accelerometer readings as input and regressing for integrated IMU poses
(i.e., position and orientation). While this design has been successfully
applied on a number of applications, it is not of theoretical performance
guarantee unless patterned motion is involved. This inevitably leads to
significantly reduced accuracy and robustness in certain use cases. To solve
this problem, we design a framework to compute observable IMU integration terms
using DNNs, followed by the numerical pose integration and sensor fusion to
achieve the performance gain. Specifically, we perform detailed analysis on the
motion terms in IMU kinematic equations, propose a dedicated network design,
loss functions, and training strategies for the IMU data processing, and
conduct extensive experiments. The results show that our method is generally
applicable and outperforms both traditional and DNN methods by wide margins.
Related papers
- Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations.
The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models.
arXiv Detail & Related papers (2024-11-14T14:31:52Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Hardware-aware training for large-scale and diverse deep learning
inference workloads using in-memory computing-based accelerators [7.152059921639833]
We show that many large-scale deep neural networks can be successfully retrained to show iso-accuracy on AIMC.
Our results suggest that AIMC nonidealities that add noise to the inputs or outputs, not the weights, have the largest impact on DNN accuracy.
arXiv Detail & Related papers (2023-02-16T18:25:06Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
We propose the Approximate Random Dropout that replaces the conventional random dropout of neurons and synapses with a regular and online generated row-based or tile-based dropout patterns.
We then develop a SGD-based Search Algorithm that produces the distribution of row-based or tile-based dropout patterns to compensate for the potential accuracy loss.
We also propose the sensitivity-aware dropout method to dynamically drop the input feature maps based on their sensitivity so as to achieve greater forward and backward training acceleration.
arXiv Detail & Related papers (2022-03-11T01:32:03Z) - TxSim:Modeling Training of Deep Neural Networks on Resistive Crossbar
Systems [3.1887081453726136]
crossbar-based computations face a major challenge due to a variety of device and circuit-level non-idealities.
We propose TxSim, a fast and customizable modeling framework to functionally evaluate DNN training on crossbar-based hardware.
arXiv Detail & Related papers (2020-02-25T19:29:43Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.