Online structural health monitoring by model order reduction and deep
learning algorithms
- URL: http://arxiv.org/abs/2103.14328v1
- Date: Fri, 26 Mar 2021 08:40:41 GMT
- Title: Online structural health monitoring by model order reduction and deep
learning algorithms
- Authors: Luca Rosafalco, Matteo Torzoni, Andrea Manzoni, Stefano Mariani,
Alberto Corigliano
- Abstract summary: We propose a simulation-based classification strategy to move towards online damage localization.
The proposed strategy has been validated by means of two case studies, concerning a 2D portal frame and a 3D portal frame railway bridge.
- Score: 0.17499351967216337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within a structural health monitoring (SHM) framework, we propose a
simulation-based classification strategy to move towards online damage
localization. The procedure combines parametric Model Order Reduction (MOR)
techniques and Fully Convolutional Networks (FCNs) to analyze raw vibration
measurements recorded on the monitored structure. First, a dataset of possible
structural responses under varying operational conditions is built through a
physics-based model, allowing for a finite set of predefined damage scenarios.
Then, the dataset is used for the offline training of the FCN. Because of the
extremely large number of model evaluations required by the dataset
construction, MOR techniques are employed to reduce the computational burden.
The trained classifier is shown to be able to map unseen vibrational
recordings, e.g. collected on-the-fly from sensors placed on the structure, to
the actual damage state, thus providing information concerning the presence and
also the location of damage. The proposed strategy has been validated by means
of two case studies, concerning a 2D portal frame and a 3D portal frame railway
bridge; MOR techniques have allowed us to respectively speed up the analyses
about 30 and 420 times. For both the case studies, after training the
classifier has attained an accuracy greater than 85%.
Related papers
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - CNN-Based Structural Damage Detection using Time-Series Sensor Data [0.0]
This research introduces an innovative approach to structural damage detection, utilizing a new Conal Neural Network (CNN) algorithm.
Time series data are divided into two categories using the proposed neural network: undamaged and damaged.
The outcomes show that the new CNN algorithm is very accurate in spotting structural degradation in the examined structure.
arXiv Detail & Related papers (2023-11-07T11:57:33Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
We present a novel approach to automatically assess multi-class building damage from real-world point clouds.
We use a machine learning model trained on virtual laser scanning (VLS) data.
The model yields high multi-target classification accuracies (overall accuracy: 92.0% - 95.1%)
arXiv Detail & Related papers (2023-02-24T12:04:46Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - Semi-supervised detection of structural damage using Variational
Autoencoder and a One-Class Support Vector Machine [0.0]
The paper proposes a semi-supervised method with a data-driven approach to detect structural anomalies.
The method is applied to a scale steel structure that was tested in nine damage's scenarios by IASC-ASCE Structural Health Monitoring Task Group.
arXiv Detail & Related papers (2022-10-11T07:39:08Z) - Robust Self-Supervised LiDAR Odometry via Representative Structure
Discovery and 3D Inherent Error Modeling [67.75095378830694]
We develop a two-stage odometry estimation network, where we obtain the ego-motion by estimating a set of sub-region transformations.
In this paper, we aim to alleviate the influence of unreliable structures in training, inference and mapping phases.
Our two-frame odometry outperforms the previous state of the arts by 16%/12% in terms of translational/rotational errors.
arXiv Detail & Related papers (2022-02-27T12:52:27Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Sparse representation for damage identification of structural systems [11.397437423613418]
We propose a novel two-stage sensitivity analysis-based framework for both model updating and sparse damage identification.
A sparse representation pipeline built on a quasi-$ell$ method is then presented for damage and localization quantification.
Results show that the proposed approach is capable of both localizing and quantifying structural damage with high accuracy.
arXiv Detail & Related papers (2020-06-06T18:04:35Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z) - Fully convolutional networks for structural health monitoring through
multivariate time series classification [0.0]
We propose a novel approach to Structural Health Monitoring (SHM)
It aims at the automatic identification of damage-sensitive features from data acquired through pervasive sensor systems.
Damage detection and localization are formulated as classification problems, and tackled through Fully Convolutional Networks (FCNs)
arXiv Detail & Related papers (2020-02-12T21:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.