SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D
Sequences
- URL: http://arxiv.org/abs/2103.14898v3
- Date: Wed, 31 Mar 2021 08:05:08 GMT
- Title: SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D
Sequences
- Authors: Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab and Federico
Tombari
- Abstract summary: We propose a method to incrementally build up semantic scene graphs from a 3D environment given a sequence of RGB-D frames.
We aggregate PointNet features from primitive scene components by means of a graph neural network.
Our approach outperforms 3D scene graph prediction methods by a large margin and its accuracy is on par with other 3D semantic and panoptic segmentation methods while running at 35 Hz.
- Score: 76.28527350263012
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scene graphs are a compact and explicit representation successfully used in a
variety of 2D scene understanding tasks. This work proposes a method to
incrementally build up semantic scene graphs from a 3D environment given a
sequence of RGB-D frames. To this end, we aggregate PointNet features from
primitive scene components by means of a graph neural network. We also propose
a novel attention mechanism well suited for partial and missing graph data
present in such an incremental reconstruction scenario. Although our proposed
method is designed to run on submaps of the scene, we show it also transfers to
entire 3D scenes. Experiments show that our approach outperforms 3D scene graph
prediction methods by a large margin and its accuracy is on par with other 3D
semantic and panoptic segmentation methods while running at 35 Hz.
Related papers
- ESGNN: Towards Equivariant Scene Graph Neural Network for 3D Scene Understanding [2.5165775267615205]
This work is the first to implement an Equivariant Graph Neural Network in semantic scene graph generation from 3D point clouds for scene understanding.
Our proposed method, ESGNN, outperforms existing state-of-the-art approaches, demonstrating a significant improvement in scene estimation with faster convergence.
arXiv Detail & Related papers (2024-06-30T06:58:04Z) - SG-PGM: Partial Graph Matching Network with Semantic Geometric Fusion for 3D Scene Graph Alignment and Its Downstream Tasks [14.548198408544032]
We treat 3D scene graph alignment as a partial graph-matching problem and propose to solve it with a graph neural network.
We reuse the geometric features learned by a point cloud registration method and associate the clustered point-level geometric features with the node-level semantic feature.
We propose a point-matching rescoring method, that uses the node-wise alignment of the 3D scene graph to reweight the matching candidates from a pre-trained point cloud registration method.
arXiv Detail & Related papers (2024-03-28T15:01:58Z) - 3D Scene Diffusion Guidance using Scene Graphs [3.207455883863626]
We propose a novel approach for 3D scene diffusion guidance using scene graphs.
To leverage the relative spatial information the scene graphs provide, we make use of relational graph convolutional blocks within our denoising network.
arXiv Detail & Related papers (2023-08-08T06:16:37Z) - Incremental 3D Semantic Scene Graph Prediction from RGB Sequences [86.77318031029404]
We propose a real-time framework that incrementally builds a consistent 3D semantic scene graph of a scene given an RGB image sequence.
Our method consists of a novel incremental entity estimation pipeline and a scene graph prediction network.
The proposed network estimates 3D semantic scene graphs with iterative message passing using multi-view and geometric features extracted from the scene entities.
arXiv Detail & Related papers (2023-05-04T11:32:16Z) - SGAligner : 3D Scene Alignment with Scene Graphs [84.01002998166145]
Building 3D scene graphs has emerged as a topic in scene representation for several embodied AI applications.
We focus on the fundamental problem of aligning pairs of 3D scene graphs whose overlap can range from zero to partial.
We propose SGAligner, the first method for aligning pairs of 3D scene graphs that is robust to in-the-wild scenarios.
arXiv Detail & Related papers (2023-04-28T14:39:22Z) - CompNVS: Novel View Synthesis with Scene Completion [83.19663671794596]
We propose a generative pipeline performing on a sparse grid-based neural scene representation to complete unobserved scene parts.
We process encoded image features in 3D space with a geometry completion network and a subsequent texture inpainting network to extrapolate the missing area.
Photorealistic image sequences can be finally obtained via consistency-relevant differentiable rendering.
arXiv Detail & Related papers (2022-07-23T09:03:13Z) - Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes Using
Scene Graphs [85.54212143154986]
Controllable scene synthesis consists of generating 3D information that satisfy underlying specifications.
Scene graphs are representations of a scene composed of objects (nodes) and inter-object relationships (edges)
We propose the first work that directly generates shapes from a scene graph in an end-to-end manner.
arXiv Detail & Related papers (2021-08-19T17:59:07Z) - Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions [94.17683799712397]
We focus on scene graphs, a data structure that organizes the entities of a scene in a graph.
We propose a learned method that regresses a scene graph from the point cloud of a scene.
We show the application of our method in a domain-agnostic retrieval task, where graphs serve as an intermediate representation for 3D-3D and 2D-3D matching.
arXiv Detail & Related papers (2020-04-08T12:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.