A Hierarchical Approach to Remote Sensing Scene Classification
- URL: http://arxiv.org/abs/2103.15463v1
- Date: Mon, 29 Mar 2021 09:56:57 GMT
- Title: A Hierarchical Approach to Remote Sensing Scene Classification
- Authors: Ozlem Sen and Hacer Yalim Keles
- Abstract summary: This paper examines the efficiency of a hierarchically designed CNN based framework that is suitable for such arrangements.
We have two cascaded deep CNN models initiated using DenseNet-121 architectures.
The results of our experiments show that although individual classifiers for different sub-categories in the hierarchical scheme perform well, the accumulation of classification errors in the cascaded structure prevents its classification performance from exceeding that of the non hierarchical deep model.
- Score: 0.913755431537592
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Remote sensing scene classification deals with the problem of classifying
land use/cover of a region from images. To predict the development and
socioeconomic structures of cities, the status of land use in regions are
tracked by the national mapping agencies of countries. Many of these agencies
use land use types that are arranged in multiple levels. In this paper, we
examined the efficiency of a hierarchically designed CNN based framework that
is suitable for such arrangements. We use NWPU-RESISC45 dataset for our
experiments and arranged this data set in a two level nested hierarchy. We have
two cascaded deep CNN models initiated using DenseNet-121 architectures. We
provide detailed empirical analysis to compare the performances of this
hierarchical scheme and its non hierarchical counterpart, together with the
individual model performances. We also evaluated the performance of the
hierarchical structure statistically to validate the presented empirical
results. The results of our experiments show that although individual
classifiers for different sub-categories in the hierarchical scheme perform
well, the accumulation of classification errors in the cascaded structure
prevents its classification performance from exceeding that of the non
hierarchical deep model.
Related papers
- From Logits to Hierarchies: Hierarchical Clustering made Simple [16.132657141993548]
We show that a lightweight procedure implemented on top of pre-trained non-hierarchical clustering models outperforms models designed specifically for hierarchical clustering.
Our proposed approach is computationally efficient and applicable to any pre-trained clustering model that outputs logits, without requiring any fine-tuning.
arXiv Detail & Related papers (2024-10-10T12:27:45Z) - Performance Improvement in Multi-class Classification via Automated
Hierarchy Generation and Exploitation through Extended LCPN Schemes [0.0]
This study explores the performance of hierarchical classification (HC) through a comprehensive analysis.
Two novel hierarchy exploitation schemes, LCPN+ and LCPN+F, have been introduced and evaluated.
The findings reveal the consistent superiority of LCPN+F, which outperforms other schemes across various datasets and scenarios.
arXiv Detail & Related papers (2023-10-31T17:11:29Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Weakly-supervised Action Localization via Hierarchical Mining [76.00021423700497]
Weakly-supervised action localization aims to localize and classify action instances in the given videos temporally with only video-level categorical labels.
We propose a hierarchical mining strategy under video-level and snippet-level manners, i.e., hierarchical supervision and hierarchical consistency mining.
We show that HiM-Net outperforms existing methods on THUMOS14 and ActivityNet1.3 datasets with large margins by hierarchically mining the supervision and consistency.
arXiv Detail & Related papers (2022-06-22T12:19:09Z) - A Top-down Supervised Learning Approach to Hierarchical Multi-label
Classification in Networks [0.21485350418225244]
This paper presents a general prediction model to hierarchical multi-label classification (HMC), where the attributes to be inferred can be specified as a strict poset.
It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class.
The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica, a variety of rice.
arXiv Detail & Related papers (2022-03-23T17:29:17Z) - CoPHE: A Count-Preserving Hierarchical Evaluation Metric in Large-Scale
Multi-Label Text Classification [70.554573538777]
We argue for hierarchical evaluation of the predictions of neural LMTC models.
We describe a structural issue in the representation of the structured label space in prior art.
We propose a set of metrics for hierarchical evaluation using the depth-based representation.
arXiv Detail & Related papers (2021-09-10T13:09:12Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning [62.82046926149371]
We propose a generic model transfer scheme to make Convlutional Neural Networks (CNNs) interpretable.
We achieve this by building a differentiable decision forest on top of CNNs.
We name the transferred model deep Dynamic Sequential Decision Forest (dDSDF)
arXiv Detail & Related papers (2021-06-05T07:41:18Z) - A hierarchical deep learning framework for the consistent classification
of land use objects in geospatial databases [8.703408520845645]
In this paper, a hierarchical deep learning framework is proposed to verify the land use information.
A new CNN-based method is proposed aiming to predict land use in multiple levels hierarchically and simultaneously.
Experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%.
arXiv Detail & Related papers (2021-04-14T17:16:35Z) - Inducing a hierarchy for multi-class classification problems [11.58041597483471]
In applications where categorical labels follow a natural hierarchy, classification methods that exploit the label structure often outperform those that do not.
In this paper, we investigate a class of methods that induce a hierarchy that can similarly improve classification performance over flat classifiers.
We demonstrate the effectiveness of the class of methods both for discovering a latent hierarchy and for improving accuracy in principled simulation settings and three real data applications.
arXiv Detail & Related papers (2021-02-20T05:40:42Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.