Efficient Large-Scale Face Clustering Using an Online Mixture of
Gaussians
- URL: http://arxiv.org/abs/2103.17272v1
- Date: Wed, 31 Mar 2021 17:59:38 GMT
- Title: Efficient Large-Scale Face Clustering Using an Online Mixture of
Gaussians
- Authors: David Montero, Naiara Aginako, Basilio Sierra and Marcos Nieto
- Abstract summary: We present an online gaussian mixture-based clustering method (OGMC) for large-scale online face clustering.
Using feature vectors (f-vectors) extracted from the incoming faces, OGMC generates clusters that may be connected to others depending on their proximity and robustness.
Experimental results show that the proposed approach outperforms state-of-the-art clustering methods on large-scale face clustering benchmarks.
- Score: 1.3101369903953806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we address the problem of large-scale online face clustering:
given a continuous stream of unknown faces, create a database grouping the
incoming faces by their identity. The database must be updated every time a new
face arrives. In addition, the solution must be efficient, accurate and
scalable. For this purpose, we present an online gaussian mixture-based
clustering method (OGMC). The key idea of this method is the proposal that an
identity can be represented by more than just one distribution or cluster.
Using feature vectors (f-vectors) extracted from the incoming faces, OGMC
generates clusters that may be connected to others depending on their proximity
and their robustness. Every time a cluster is updated with a new sample, its
connections are also updated. With this approach, we reduce the dependency of
the clustering process on the order and the size of the incoming data and we
are able to deal with complex data distributions. Experimental results show
that the proposed approach outperforms state-of-the-art clustering methods on
large-scale face clustering benchmarks not only in accuracy, but also in
efficiency and scalability.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Distributed Solution of the Inverse Rig Problem in Blendshape Facial
Animation [0.0]
Rig inversion is central in facial animation as it allows for a realistic and appealing performance of avatars.
A possible approach towards a faster solution is clustering, which exploits the spacial nature of the face.
In this paper, we go a step further, involving cluster coupling to get more confident estimates of the overlapping components.
arXiv Detail & Related papers (2023-03-11T10:34:07Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - On Mitigating Hard Clusters for Face Clustering [48.39472979642971]
Face clustering is a promising way to scale up face recognition systems using large-scale unlabeled face images.
We introduce two novel modules, Neighborhood-Diffusion-based Density (NDDe) and Transition-Probability-based Distance (TPDi)
Our experiments on multiple benchmarks show that each module contributes to the final performance of our method.
arXiv Detail & Related papers (2022-07-25T03:55:15Z) - Neural Mixture Models with Expectation-Maximization for End-to-end Deep
Clustering [0.8543753708890495]
In this paper, we realize mixture model-based clustering with a neural network.
We train the network end-to-end via batch-wise EM iterations where the forward pass acts as the E-step and the backward pass acts as the M-step.
Our trained networks outperform single-stage deep clustering methods that still depend on k-means.
arXiv Detail & Related papers (2021-07-06T08:00:58Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.