Optimizer Fusion: Efficient Training with Better Locality and
Parallelism
- URL: http://arxiv.org/abs/2104.00237v1
- Date: Thu, 1 Apr 2021 03:44:13 GMT
- Title: Optimizer Fusion: Efficient Training with Better Locality and
Parallelism
- Authors: Zixuan Jiang, Jiaqi Gu, Mingjie Liu, Keren Zhu, David Z. Pan
- Abstract summary: Experimental results show that we can achieve an up to 20% training time reduction on various configurations.
Since our methods do not alter the algorithm, they can be used as a general "plug-in" technique to the training process.
- Score: 11.656318345362804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning frameworks adopt iterative optimizers to train neural
networks. Conventional eager execution separates the updating of trainable
parameters from forward and backward computations. However, this approach
introduces nontrivial training time overhead due to the lack of data locality
and computation parallelism. In this work, we propose to fuse the optimizer
with forward or backward computation to better leverage locality and
parallelism during training. By reordering the forward computation, gradient
calculation, and parameter updating, our proposed method improves the
efficiency of iterative optimizers. Experimental results demonstrate that we
can achieve an up to 20% training time reduction on various configurations.
Since our methods do not alter the optimizer algorithm, they can be used as a
general "plug-in" technique to the training process.
Related papers
- No Train No Gain: Revisiting Efficient Training Algorithms For
Transformer-based Language Models [31.080446886440757]
In this work, we revisit three categories of such algorithms: dynamic architectures (layer stacking, dropping), batch selection (selective backprop, RHO loss), and efficient layers (Lion, Sophia)
We find that their training, validation, and downstream gains vanish compared to a baseline with a fully-decayed learning rate.
We define an evaluation protocol that enables machines to be done on arbitrary computation by mapping all computation time to a reference machine which we call reference system time.
arXiv Detail & Related papers (2023-07-12T20:10:14Z) - Transformer-Based Learned Optimization [37.84626515073609]
We propose a new approach to learned optimization where we represent the computation's update step using a neural network.
Our innovation is a new neural network architecture inspired by the classic BFGS algorithm.
We demonstrate the advantages of our approach on a benchmark composed of objective functions traditionally used for the evaluation of optimization algorithms.
arXiv Detail & Related papers (2022-12-02T09:47:08Z) - VeLO: Training Versatile Learned Optimizers by Scaling Up [67.90237498659397]
We leverage the same scaling approach behind the success of deep learning to learn versatiles.
We train an ingest for deep learning which is itself a small neural network that ingests and outputs parameter updates.
We open source our learned, meta-training code, the associated train test data, and an extensive benchmark suite with baselines at velo-code.io.
arXiv Detail & Related papers (2022-11-17T18:39:07Z) - Learning to Optimize Quasi-Newton Methods [22.504971951262004]
This paper introduces a novel machine learning called LODO, which tries to online meta-learn the best preconditioner during optimization.
Unlike other L2O methods, LODO does not require any meta-training on a training task distribution.
We show that our gradient approximates the inverse Hessian in noisy loss landscapes and is capable of representing a wide range of inverse Hessians.
arXiv Detail & Related papers (2022-10-11T03:47:14Z) - Layer-Wise Partitioning and Merging for Efficient and Scalable Deep
Learning [16.38731019298993]
We have proposed a novel layer-wise partitioning and merging, forward and backward pass parallel framework to provide better training performance.
The experimental evaluation on real use cases shows that the proposed method outperforms the state-of-the-art approaches in terms of training speed.
arXiv Detail & Related papers (2022-07-22T11:47:34Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - Training Learned Optimizers with Randomly Initialized Learned Optimizers [49.67678615506608]
We show that a population of randomly learneds can be used to train themselves from scratch in an online fashion.
A form of population based training is used to orchestrate this self-training.
We believe feedback loops of this type will be important and powerful in the future of machine learning.
arXiv Detail & Related papers (2021-01-14T19:07:17Z) - Tasks, stability, architecture, and compute: Training more effective
learned optimizers, and using them to train themselves [53.37905268850274]
We introduce a new, hierarchical, neural network parameterized, hierarchical with access to additional features such as validation loss to enable automatic regularization.
Most learneds have been trained on only a single task, or a small number of tasks.
We train ours on thousands of tasks, making use of orders of magnitude more compute, resulting in generalizes that perform better to unseen tasks.
arXiv Detail & Related papers (2020-09-23T16:35:09Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
Feedforward computation, such as evaluating a neural network or sampling from an autoregressive model, is ubiquitous in machine learning.
We frame the task of feedforward computation as solving a system of nonlinear equations. We then propose to find the solution using a Jacobi or Gauss-Seidel fixed-point method, as well as hybrid methods of both.
Our method is guaranteed to give exactly the same values as the original feedforward computation with a reduced (or equal) number of parallelizable iterations, and hence reduced time given sufficient parallel computing power.
arXiv Detail & Related papers (2020-02-10T10:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.