Divergence Optimization for Noisy Universal Domain Adaptation
- URL: http://arxiv.org/abs/2104.00246v1
- Date: Thu, 1 Apr 2021 04:16:04 GMT
- Title: Divergence Optimization for Noisy Universal Domain Adaptation
- Authors: Qing Yu, Atsushi Hashimoto, Yoshitaka Ushiku
- Abstract summary: Universal domain adaptation (UniDA) has been proposed to transfer knowledge learned from a label-rich source domain to a label-scarce target domain.
This paper introduces a two-head convolutional neural network framework to solve all problems simultaneously.
- Score: 32.05829135903389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal domain adaptation (UniDA) has been proposed to transfer knowledge
learned from a label-rich source domain to a label-scarce target domain without
any constraints on the label sets. In practice, however, it is difficult to
obtain a large amount of perfectly clean labeled data in a source domain with
limited resources. Existing UniDA methods rely on source samples with correct
annotations, which greatly limits their application in the real world. Hence,
we consider a new realistic setting called Noisy UniDA, in which classifiers
are trained with noisy labeled data from the source domain and unlabeled data
with an unknown class distribution from the target domain. This paper
introduces a two-head convolutional neural network framework to solve all
problems simultaneously. Our network consists of one common feature generator
and two classifiers with different decision boundaries. By optimizing the
divergence between the two classifiers' outputs, we can detect noisy source
samples, find "unknown" classes in the target domain, and align the
distribution of the source and target domains. In an extensive evaluation of
different domain adaptation settings, the proposed method outperformed existing
methods by a large margin in most settings.
Related papers
- Noisy Universal Domain Adaptation via Divergence Optimization for Visual
Recognition [30.31153237003218]
A novel scenario named Noisy UniDA is proposed to transfer knowledge from a labeled source domain to an unlabeled target domain.
A multi-head convolutional neural network framework is proposed to address all of the challenges faced in the Noisy UniDA at once.
arXiv Detail & Related papers (2023-04-20T14:18:38Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Aligning Domain-specific Distribution and Classifier for Cross-domain
Classification from Multiple Sources [25.204055330850164]
We propose a new framework with two alignment stages for Unsupervised Domain Adaptation.
Our method can achieve remarkable results on popular benchmark datasets for image classification.
arXiv Detail & Related papers (2022-01-04T06:35:11Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Learning Target Domain Specific Classifier for Partial Domain Adaptation [85.71584004185031]
Unsupervised domain adaptation (UDA) aims at reducing the distribution discrepancy when transferring knowledge from a labeled source domain to an unlabeled target domain.
This paper focuses on a more realistic UDA scenario, where the target label space is subsumed to the source label space.
arXiv Detail & Related papers (2020-08-25T02:28:24Z) - Sparsely-Labeled Source Assisted Domain Adaptation [64.75698236688729]
This paper proposes a novel Sparsely-Labeled Source Assisted Domain Adaptation (SLSA-DA) algorithm.
Due to the label scarcity problem, the projected clustering is conducted on both the source and target domains.
arXiv Detail & Related papers (2020-05-08T15:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.