Mitigating Media Bias through Neutral Article Generation
- URL: http://arxiv.org/abs/2104.00336v1
- Date: Thu, 1 Apr 2021 08:37:26 GMT
- Title: Mitigating Media Bias through Neutral Article Generation
- Authors: Nayeon Lee, Yejin Bang, Andrea Madotto, Pascale Fung
- Abstract summary: Existing mitigation work displays articles from multiple news outlets to provide diverse news coverage, but without neutralizing the bias inherent in each of the displayed articles.
We propose a new task, a single neutralized article generation out of multiple biased articles, to facilitate more efficient access to balanced and unbiased information.
- Score: 39.29914845102368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Media bias can lead to increased political polarization, and thus, the need
for automatic mitigation methods is growing. Existing mitigation work displays
articles from multiple news outlets to provide diverse news coverage, but
without neutralizing the bias inherent in each of the displayed articles.
Therefore, we propose a new task, a single neutralized article generation out
of multiple biased articles, to facilitate more efficient access to balanced
and unbiased information. In this paper, we compile a new dataset NeuWS, define
an automatic evaluation metric, and provide baselines and multiple analyses to
serve as a solid starting point for the proposed task. Lastly, we obtain a
human evaluation to demonstrate the alignment between our metric and human
judgment.
Related papers
- Measuring and Addressing Indexical Bias in Information Retrieval [69.7897730778898]
PAIR framework supports automatic bias audits for ranked documents or entire IR systems.
After introducing DUO, we run an extensive evaluation of 8 IR systems on a new corpus of 32k synthetic and 4.7k natural documents.
A human behavioral study validates our approach, showing that our bias metric can help predict when and how indexical bias will shift a reader's opinion.
arXiv Detail & Related papers (2024-06-06T17:42:37Z) - Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles [136.84278943588652]
We propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event.
To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm.
The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference.
arXiv Detail & Related papers (2023-09-17T20:28:17Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Exploiting Transformer-based Multitask Learning for the Detection of
Media Bias in News Articles [21.960154864540282]
We propose a Transformer-based deep learning architecture trained via Multi-Task Learning to detect media bias.
Our best-performing implementation achieves a macro $F_1$ of 0.776, a performance boost of 3% compared to our baseline, outperforming existing methods.
arXiv Detail & Related papers (2022-11-07T12:22:31Z) - Neural Media Bias Detection Using Distant Supervision With BABE -- Bias
Annotations By Experts [24.51774048437496]
This paper presents BABE, a robust and diverse data set for media bias research.
It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level.
Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically.
arXiv Detail & Related papers (2022-09-29T05:32:55Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
The research presented in this paper addresses not only the automatic detection of bias but goes one step further in that it explores how political bias and unfairness are manifested linguistically.
We utilize a new corpus of 6964 news articles with labels derived from adfontesmedia.com and develop a neural model for bias assessment.
arXiv Detail & Related papers (2020-10-20T22:25:00Z) - Generating Representative Headlines for News Stories [31.67864779497127]
Grouping articles that are reporting the same event into news stories is a common way of assisting readers in their news consumption.
It remains a challenging research problem to efficiently and effectively generate a representative headline for each story.
We develop a distant supervision approach to train large-scale generation models without any human annotation.
arXiv Detail & Related papers (2020-01-26T02:08:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.