A Semantic Segmentation Network for Urban-Scale Building Footprint
Extraction Using RGB Satellite Imagery
- URL: http://arxiv.org/abs/2104.01263v1
- Date: Fri, 2 Apr 2021 22:32:04 GMT
- Title: A Semantic Segmentation Network for Urban-Scale Building Footprint
Extraction Using RGB Satellite Imagery
- Authors: Aatif Jiwani, Shubhrakanti Ganguly, Chao Ding, Nan Zhou, and David M.
Chan
- Abstract summary: Urban areas consume over two-thirds of the world's energy and account for more than 70 percent of global CO2 emissions.
We propose a modified DeeplabV3+ module with a Dilated ResNet backbone to generate masks of building footprints from only three-channel RGB satellite imagery.
We achieve state-of-the-art performance across three standard benchmarks and demonstrate that our method is agnostic to the scale, resolution, and urban density of satellite imagery.
- Score: 1.9400948599830012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban areas consume over two-thirds of the world's energy and account for
more than 70 percent of global CO2 emissions. As stated in IPCC's Global
Warming of 1.5C report, achieving carbon neutrality by 2050 requires a scalable
approach that can be applied in a global context. Conventional methods of
collecting data on energy use and emissions of buildings are extremely
expensive and require specialized geometry information that not all cities have
readily available. High-quality building footprint generation from satellite
images can accelerate this predictive process and empower municipal
decision-making at scale. However, previous deep learning-based approaches use
supplemental data such as point cloud data, building height information, and
multi-band imagery - which has limited availability and is difficult to
produce. In this paper, we propose a modified DeeplabV3+ module with a Dilated
ResNet backbone to generate masks of building footprints from only
three-channel RGB satellite imagery. Furthermore, we introduce an F-Beta
measure in our objective function to help the model account for skewed class
distributions. In addition to an F-Beta objective function, we incorporate an
exponentially weighted boundary loss and use a cross-dataset training strategy
to further increase the quality of predictions. As a result, we achieve
state-of-the-art performance across three standard benchmarks and demonstrate
that our RGB-only method is agnostic to the scale, resolution, and urban
density of satellite imagery.
Related papers
- AGBD: A Global-scale Biomass Dataset [18.976975819550173]
Existing datasets for Above Ground Biomass estimation from satellite imagery are limited.
This dataset combines AGB reference data from the GEDI mission with data from Sentinel-2 and PALSAR-2 imagery.
It includes pre-processed high-level features such as a dense canopy height map, an elevation map, and a land-cover classification map.
It can be easily accessed using a single line of code, offering a solid basis for efforts towards global AGB estimation.
arXiv Detail & Related papers (2024-06-07T13:34:17Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions.
The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020.
We also introduce a post-processing step using a convolutional network trained on GEDI observations.
arXiv Detail & Related papers (2023-04-14T15:52:57Z) - FedUKD: Federated UNet Model with Knowledge Distillation for Land Use
Classification from Satellite and Street Views [1.7847474813778919]
We use a Federated UNet model for Semantic of satellite and street view images.
The accuracy was above 95% and we also brought in a significant model compression to over 17 times and 62 times for street View and satellite images respectively.
Our proposed framework has the potential to be a game-changer in real-time tracking of climate change across the planet.
arXiv Detail & Related papers (2022-12-05T12:14:00Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
We introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km2.
Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset.
arXiv Detail & Related papers (2022-01-12T14:48:11Z) - Deep residential representations: Using unsupervised learning to unlock
elevation data for geo-demographic prediction [0.0]
LiDAR technology can be used to provide detailed three-dimensional elevation maps of urban and rural landscapes.
To date, airborne LiDAR imaging has been predominantly confined to the environmental and archaeological domains.
We consider the suitability of this data not just on its own but also as a source of data in combination with demographic features, thus providing a realistic use case for the embeddings.
arXiv Detail & Related papers (2021-12-02T17:10:52Z) - Low Light Image Enhancement via Global and Local Context Modeling [164.85287246243956]
We introduce a context-aware deep network for low-light image enhancement.
First, it features a global context module that models spatial correlations to find complementary cues over full spatial domain.
Second, it introduces a dense residual block that captures local context with a relatively large receptive field.
arXiv Detail & Related papers (2021-01-04T09:40:54Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
We present an algorithm that operates on 3D-point clouds and estimates the underlying DTM for the scene using an end-to-end approach.
Our model learns neighborhood information and seamlessly integrates this with point-wise and block-wise global features.
arXiv Detail & Related papers (2020-05-21T15:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.