On-the-Fly Aligned Data Augmentation for Sequence-to-Sequence ASR
- URL: http://arxiv.org/abs/2104.01393v1
- Date: Sat, 3 Apr 2021 13:00:00 GMT
- Title: On-the-Fly Aligned Data Augmentation for Sequence-to-Sequence ASR
- Authors: Tsz Kin Lam, Mayumi Ohta, Shigehiko Schamoni, Stefan Riezler
- Abstract summary: We propose an on-the-fly data augmentation method for automatic speech recognition (ASR)
Our method, called Aligned Data Augmentation (ADA) for ASR, replaces transcribed tokens and the speech representations in an aligned manner to generate training pairs.
- Score: 10.261890123213622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an on-the-fly data augmentation method for automatic speech
recognition (ASR) that uses alignment information to generate effective
training samples. Our method, called Aligned Data Augmentation (ADA) for ASR,
replaces transcribed tokens and the speech representations in an aligned manner
to generate previously unseen training pairs. The speech representations are
sampled from an audio dictionary that has been extracted from the training
corpus and inject speaker variations into the training examples. The
transcribed tokens are either predicted by a language model such that the
augmented data pairs are semantically close to the original data, or randomly
sampled. Both strategies result in training pairs that improve robustness in
ASR training. Our experiments on a Seq-to-Seq architecture show that ADA can be
applied on top of SpecAugment, and achieves about 9-23% and 4-15% relative
improvements in WER over SpecAugment alone on LibriSpeech 100h and LibriSpeech
960h test datasets, respectively.
Related papers
- Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit is a sequence-to-sequence encoder-decoder model that uses the Transformer architecture.
We show that our model achieves excellent performance in terms of separation, both with or without transcript conditioning.
We also measure the automatic speech recognition (ASR) performance and provide audio samples of speech synthesis to demonstrate the additional utility of our model.
arXiv Detail & Related papers (2023-08-21T01:52:01Z) - Lip2Vec: Efficient and Robust Visual Speech Recognition via
Latent-to-Latent Visual to Audio Representation Mapping [4.271091833712731]
We propose a simple approach, named Lip2Vec that is based on learning a prior model.
The proposed model compares favorably with fully-supervised learning methods on the LRS3 dataset achieving 26 WER.
We believe that reprogramming the VSR as an ASR task narrows the performance gap between the two and paves the way for more flexible formulations of lip reading.
arXiv Detail & Related papers (2023-08-11T12:59:02Z) - Towards Selection of Text-to-speech Data to Augment ASR Training [20.115236045164355]
We train a neural network to measure the similarity of a synthetic data to real speech.
We find that incorporating synthetic samples with considerable dissimilarity to real speech is crucial for boosting recognition performance.
arXiv Detail & Related papers (2023-05-30T17:24:28Z) - Continual Learning for On-Device Speech Recognition using Disentangled
Conformers [54.32320258055716]
We introduce a continual learning benchmark for speaker-specific domain adaptation derived from LibriVox audiobooks.
We propose a novel compute-efficient continual learning algorithm called DisentangledCL.
Our experiments show that the DisConformer models significantly outperform baselines on general ASR.
arXiv Detail & Related papers (2022-12-02T18:58:51Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
We introduce Wav2Seq, the first self-supervised approach to pre-train both parts of encoder-decoder models for speech data.
We induce a pseudo language as a compact discrete representation, and formulate a self-supervised pseudo speech recognition task.
This process stands on its own, or can be applied as low-cost second-stage pre-training.
arXiv Detail & Related papers (2022-05-02T17:59:02Z) - Enhanced Direct Speech-to-Speech Translation Using Self-supervised
Pre-training and Data Augmentation [76.13334392868208]
Direct speech-to-speech translation (S2ST) models suffer from data scarcity issues.
In this work, we explore self-supervised pre-training with unlabeled speech data and data augmentation to tackle this issue.
arXiv Detail & Related papers (2022-04-06T17:59:22Z) - A Complementary Joint Training Approach Using Unpaired Speech and Text
for Low-Resource Automatic Speech Recognition [25.473191378558138]
We leverage unpaired data to train a general sequence-to-sequence model.
Inspired by the complementarity of speech-PseudoLabel pair and SynthesizedAudio-text pair, we propose a complementary joint training(CJT) method.
arXiv Detail & Related papers (2022-04-05T07:02:53Z) - Improving Punctuation Restoration for Speech Transcripts via External
Data [1.4335946386597276]
We tackle the punctuation restoration problem specifically for the noisy text.
We introduce a data sampling technique based on an n-gram language model to sample more training data.
The proposed approach outperforms the baseline with an improvement of 1:12% F1 score.
arXiv Detail & Related papers (2021-10-01T17:40:55Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation.
We propose to predict the self-supervised discrete representations learned from an unlabeled speech corpus instead.
When target text transcripts are available, we design a multitask learning framework with joint speech and text training that enables the model to generate dual mode output (speech and text) simultaneously in the same inference pass.
arXiv Detail & Related papers (2021-07-12T17:40:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.