Learning Linear Policies for Robust Bipedal Locomotion on Terrains with
Varying Slopes
- URL: http://arxiv.org/abs/2104.01662v1
- Date: Sun, 4 Apr 2021 18:50:58 GMT
- Title: Learning Linear Policies for Robust Bipedal Locomotion on Terrains with
Varying Slopes
- Authors: Lokesh Krishna, Utkarsh A. Mishra, Guillermo A. Castillo, Ayonga
Hereid, Shishir Kolathaya
- Abstract summary: We learn this policy via a model-free and a gradient-free learning algorithm, Augmented Random Search (ARS), in the two robot platforms Rabbit and Digit.
We demonstrate additional behaviors like walking backwards, stepping-in-place, and recovery from external pushes of up to 120 N.
The end result is a robust and a fast feedback control law for bipedal walking on terrains with varying slopes.
- Score: 5.737287537823072
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, with a view toward deployment of light-weight control
frameworks for bipedal walking robots, we realize end-foot trajectories that
are shaped by a single linear feedback policy. We learn this policy via a
model-free and a gradient-free learning algorithm, Augmented Random Search
(ARS), in the two robot platforms Rabbit and Digit. Our contributions are
two-fold: a) By using torso and support plane orientation as inputs, we achieve
robust walking on slopes of up to 20 degrees in simulation. b) We demonstrate
additional behaviors like walking backwards, stepping-in-place, and recovery
from external pushes of up to 120 N. The end result is a robust and a fast
feedback control law for bipedal walking on terrains with varying slopes.
Towards the end, we also provide preliminary results of hardware transfer to
Digit.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Impedance Matching: Enabling an RL-Based Running Jump in a Quadruped Robot [7.516046071926082]
We propose a new framework to mitigate the gap between simulated and real robots.
Our framework offers a structured guideline for parameter selection and the range for dynamics randomization in simulation.
Results are, to the best of our knowledge, one of the highest and longest running jumps demonstrated by an RL-based control policy in a real quadruped robot.
arXiv Detail & Related papers (2024-04-23T14:52:09Z) - From Flies to Robots: Inverted Landing in Small Quadcopters with Dynamic
Perching [15.57055572401334]
Inverted landing is a routine behavior among a number of animal fliers.
We develop a control policy general to arbitrary ceiling-approach conditions.
We successfully achieved a range of robust inverted-landing behaviors in small quadcopters.
arXiv Detail & Related papers (2024-02-29T21:09:08Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
Inverted landing in a rapid and robust manner is a challenging feat for aerial robots, especially while depending entirely on onboard sensing and computation.
Previous work has identified a direct causal connection between a series of onboard visual cues and kinematic actions that allow for reliable execution of this challenging aerobatic maneuver in small aerial robots.
In this work, we first utilized Deep Reinforcement Learning and a physics-based simulation to obtain a general, optimal control policy for robust inverted landing.
arXiv Detail & Related papers (2022-09-22T14:38:10Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
Deep reinforcement learning is a promising approach to learning policies in uncontrolled environments.
Recent advancements in machine learning algorithms and libraries combined with a carefully tuned robot controller lead to learning quadruped in only 20 minutes in the real world.
arXiv Detail & Related papers (2022-08-16T17:37:36Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
We show that it is pivotal in increasing controller robustness by learning a latent space capturing the key stance phases constituting a particular gait.
We demonstrate that specific properties of the drive signal map directly to gait parameters such as cadence, footstep height and full stance duration.
The use of a generative model facilitates the detection and mitigation of disturbances to provide a versatile and robust planning framework.
arXiv Detail & Related papers (2022-05-02T19:49:53Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
This work aims to exploit the use of sparse visual observations to achieve perceptual locomotion over a range of commonly seen bumps, ramps, and stairs in human-centred environments.
We first formulate the selection of minimal visual input that can represent the uneven surfaces of interest, and propose a learning framework that integrates such exteroceptive and proprioceptive data.
We validate the learned policy in tasks that require omnidirectional walking over flat ground and forward locomotion over terrains with obstacles, showing a high success rate.
arXiv Detail & Related papers (2021-09-28T20:25:10Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and
Optimal Control [6.669503016190925]
We present a unified model-based and data-driven approach for quadrupedal planning and control.
We map sensory information and desired base velocity commands into footstep plans using a reinforcement learning policy.
We train and evaluate our framework on a complex quadrupedal system, ANYmal B, and demonstrate transferability to a larger and heavier robot, ANYmal C, without requiring retraining.
arXiv Detail & Related papers (2020-12-05T18:30:23Z) - Robust Quadrupedal Locomotion on Sloped Terrains: A Linear Policy
Approach [3.752600874088677]
We use a linear policy for realizing end-foot trajectories in the quadruped robot, Stoch $2$.
In particular, the parameters of the end-foot trajectories are shaped via a linear feedback policy that takes the torso orientation and the terrain slope as inputs.
The resulting walking is robust to terrain slope variations and external pushes.
arXiv Detail & Related papers (2020-10-30T16:02:08Z) - Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial
Vehicles (MAVs) [61.94975011711275]
We propose a geometrically based motion planning technique textquotedblleft RRT*textquotedblright; for this purpose.
In the proposed technique, we modified original RRT* introducing an adaptive search space and a steering function.
We have tested the proposed technique in various simulated environments.
arXiv Detail & Related papers (2020-08-29T09:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.