Lipstick ain't enough: Beyond Color Matching for In-the-Wild Makeup
Transfer
- URL: http://arxiv.org/abs/2104.01867v1
- Date: Mon, 5 Apr 2021 12:12:56 GMT
- Title: Lipstick ain't enough: Beyond Color Matching for In-the-Wild Makeup
Transfer
- Authors: Thao Nguyen, Anh Tran, Minh Hoai
- Abstract summary: We propose a holistic makeup transfer framework that can handle all the mentioned makeup components.
It consists of an improved color transfer branch and a novel pattern transfer branch to learn all makeup properties.
Our framework achieves the state of the art performance on both light and extreme makeup styles.
- Score: 20.782984081934213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Makeup transfer is the task of applying on a source face the makeup style
from a reference image. Real-life makeups are diverse and wild, which cover not
only color-changing but also patterns, such as stickers, blushes, and
jewelries. However, existing works overlooked the latter components and
confined makeup transfer to color manipulation, focusing only on light makeup
styles. In this work, we propose a holistic makeup transfer framework that can
handle all the mentioned makeup components. It consists of an improved color
transfer branch and a novel pattern transfer branch to learn all makeup
properties, including color, shape, texture, and location. To train and
evaluate such a system, we also introduce new makeup datasets for real and
synthetic extreme makeup. Experimental results show that our framework achieves
the state of the art performance on both light and extreme makeup styles. Code
is available at https://github.com/VinAIResearch/CPM.
Related papers
- BeautyBank: Encoding Facial Makeup in Latent Space [2.113770213797994]
We propose BeautyBank, a novel makeup encoder that disentangles pattern features of bare and makeup faces.
Our method encodes makeup features into a high-dimensional space, preserving essential details necessary for makeup reconstruction.
We also propose a Progressive Makeup Tuning (PMT) strategy, specifically designed to enhance the preservation of detailed makeup features.
arXiv Detail & Related papers (2024-11-18T01:52:31Z) - Stable-Makeup: When Real-World Makeup Transfer Meets Diffusion Model [35.01727715493926]
Current makeup transfer methods are limited to simple makeup styles, making them difficult to apply in real-world scenarios.
We introduce Stable-Makeup, a novel diffusion-based makeup transfer method capable of robustly transferring a wide range of real-world makeup.
arXiv Detail & Related papers (2024-03-12T15:53:14Z) - PaletteNeRF: Palette-based Appearance Editing of Neural Radiance Fields [60.66412075837952]
We present PaletteNeRF, a novel method for appearance editing of neural radiance fields (NeRF) based on 3D color decomposition.
Our method decomposes the appearance of each 3D point into a linear combination of palette-based bases.
We extend our framework with compressed semantic features for semantic-aware appearance editing.
arXiv Detail & Related papers (2022-12-21T00:20:01Z) - BeautyREC: Robust, Efficient, and Content-preserving Makeup Transfer [73.39598356799974]
We propose a Robust, Efficient, and Component-specific makeup transfer method (abbreviated as BeautyREC)
A component-specific correspondence to directly transfer the makeup style of a reference image to the corresponding components.
As an auxiliary, the long-range visual dependencies of Transformer are introduced for effective global makeup transfer.
arXiv Detail & Related papers (2022-12-12T12:38:27Z) - PSGAN++: Robust Detail-Preserving Makeup Transfer and Removal [176.47249346856393]
PSGAN++ is capable of performing both detail-preserving makeup transfer and effective makeup removal.
For makeup transfer, PSGAN++ uses a Makeup Distill Network to extract makeup information.
For makeup removal, PSGAN++ applies an Identity Distill Network to embed the identity information from with-makeup images into identity matrices.
arXiv Detail & Related papers (2021-05-26T04:37:57Z) - SOGAN: 3D-Aware Shadow and Occlusion Robust GAN for Makeup Transfer [68.38955698584758]
We propose a novel makeup transfer method called 3D-Aware Shadow and Occlusion Robust GAN (SOGAN)
We first fit a 3D face model and then disentangle the faces into shape and texture.
In the texture branch, we map the texture to the UV space and design a UV texture generator to transfer the makeup.
arXiv Detail & Related papers (2021-04-21T14:48:49Z) - MakeupBag: Disentangling Makeup Extraction and Application [0.0]
MakeupBag is a novel method for automatic makeup style transfer.
It allows customization and pixel specific modification of the extracted makeup style.
In a comparative analysis, MakeupBag is shown to outperform current state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-03T18:44:24Z) - Cosmetic-Aware Makeup Cleanser [109.41917954315784]
Face verification aims at determining whether a pair of face images belongs to the same identity.
Recent studies have revealed the negative impact of facial makeup on the verification performance.
This paper proposes a semanticaware makeup cleanser (SAMC) to remove facial makeup under different poses and expressions.
arXiv Detail & Related papers (2020-04-20T09:18:23Z) - Local Facial Makeup Transfer via Disentangled Representation [18.326829657548025]
We propose a novel unified adversarial disentangling network to decompose face images into four independent components, i.e., personal identity, lips makeup style, eyes makeup style and face makeup style.
Our approach can produce more realistic and accurate makeup transfer results compared to the state-of-the-art methods.
arXiv Detail & Related papers (2020-03-27T00:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.