Learning from Self-Discrepancy via Multiple Co-teaching for Cross-Domain
Person Re-Identification
- URL: http://arxiv.org/abs/2104.02265v1
- Date: Tue, 6 Apr 2021 03:12:11 GMT
- Title: Learning from Self-Discrepancy via Multiple Co-teaching for Cross-Domain
Person Re-Identification
- Authors: Suncheng Xiang, Yuzhuo Fu, Mengyuan Guan, Ting Liu
- Abstract summary: We propose a multiple co-teaching framework for domain adaptive person re-ID.
Our method achieves competitive performance compared with the state-of-the-arts.
- Score: 12.106894735305714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Employing clustering strategy to assign unlabeled target images with pseudo
labels has become a trend for person re-identification (re-ID) algorithms in
domain adaptation. A potential limitation of these clustering-based methods is
that they always tend to introduce noisy labels, which will undoubtedly hamper
the performance of our re-ID system. To handle this limitation, an intuitive
solution is to utilize collaborative training to purify the pseudo label
quality. However, there exists a challenge that the complementarity of two
networks, which inevitably share a high similarity, becomes weakened gradually
as training process goes on; worse still, these approaches typically ignore to
consider the self-discrepancy of intra-class relations. To address this issue,
in this letter, we propose a multiple co-teaching framework for domain adaptive
person re-ID, opening up a promising direction about self-discrepancy problem
under unsupervised condition. On top of that, a mean-teaching mechanism is
leveraged to enlarge the difference and discover more complementary features.
Comprehensive experiments conducted on several large-scale datasets show that
our method achieves competitive performance compared with the
state-of-the-arts.
Related papers
- Pose-Transformation and Radial Distance Clustering for Unsupervised Person Re-identification [5.522856885199346]
Person re-identification (re-ID) aims to tackle the problem of matching identities across non-overlapping cameras.
Supervised approaches require identity information that may be difficult to obtain and are inherently biased towards the dataset they are trained on.
We propose an unsupervised approach to the person re-ID setup. Having zero knowledge of true labels, our proposed method enhances the discriminating ability of the learned features.
arXiv Detail & Related papers (2024-11-06T20:55:30Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Refining Pseudo Labels with Clustering Consensus over Generations for
Unsupervised Object Re-identification [84.72303377833732]
Unsupervised object re-identification targets at learning discriminative representations for object retrieval without any annotations.
We propose to estimate pseudo label similarities between consecutive training generations with clustering consensus and refine pseudo labels with temporally propagated and ensembled pseudo labels.
The proposed pseudo label refinery strategy is simple yet effective and can be seamlessly integrated into existing clustering-based unsupervised re-identification methods.
arXiv Detail & Related papers (2021-06-11T02:42:42Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
This paper jointly enforces visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification.
Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks.
arXiv Detail & Related papers (2020-07-21T14:31:27Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
Person re-identification (re-ID) is an important topic in computer vision.
This paper studies the unsupervised setting of re-ID, which does not require any labeled information.
Experiments on two image-based and video-based datasets demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2020-04-07T17:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.