Fault-tolerant quantum computation with static linear optics
- URL: http://arxiv.org/abs/2104.03241v2
- Date: Fri, 9 Apr 2021 15:53:32 GMT
- Title: Fault-tolerant quantum computation with static linear optics
- Authors: Ilan Tzitrin, Takaya Matsuura, Rafael N. Alexander, Guillaume
Dauphinais, J. Eli Bourassa, Krishna K. Sabapathy, Nicolas C. Menicucci, Ish
Dhand
- Abstract summary: In this work we propose a topologically error-corrected architecture that does away with these elements at no cost.
Our computer consists of three modules: a 2D array of probabilistic sources of GKP states; a depth-four circuit of static beamsplitters, phase shifters, and single-time-step delay lines.
The symmetry of our proposed circuit allows us to combine the effects of finite squeezing and uniform photon loss within the noise model, resulting in more comprehensive threshold estimates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scalability of photonic implementations of fault-tolerant quantum
computing based on Gottesman-Kitaev-Preskill (GKP) qubits is injured by the
requirements of inline squeezing and reconfigurability of the linear optical
network. In this work we propose a topologically error-corrected architecture
that does away with these elements at no cost - in fact, at an advantage - to
state preparation overheads. Our computer consists of three modules: a 2D array
of probabilistic sources of GKP states; a depth-four circuit of static
beamsplitters, phase shifters, and single-time-step delay lines; and a 2D array
of homodyne detectors. The symmetry of our proposed circuit allows us to
combine the effects of finite squeezing and uniform photon loss within the
noise model, resulting in more comprehensive threshold estimates. These jumps
over both architectural and analytical hurdles considerably expedite the
construction of a photonic quantum computer.
Related papers
- Tailoring fusion-based photonic quantum computing schemes to quantum emitters [0.0]
Fusion-based quantum computation is a promising quantum computing model where small-sized photonic resource states are simultaneously entangled and measured by fusion gates.
Here, we propose fusion-based architectures tailored to the capabilities and noise models in quantum emitters.
We show that high tolerance to dominant physical error mechanisms can be achieved, with fault-tolerance thresholds of 8% for photon loss, 4% for photon distinguishability between emitters, and spin noise thresholds well above memory-induced errors.
arXiv Detail & Related papers (2024-10-09T11:31:49Z) - Deterministic generation of concatenated graph codes from quantum emitters [0.0]
Concatenation of a fault-tolerant construction with a code able to efficiently correct loss is a promising approach to achieve this.
We propose schemes for generatingd graph codes using multi-photon emission from two quantum emitters or a single quantum emitter coupled to a memory.
We show that these schemes enable fault-tolerant fusion-based quantum regimes in practical computation with high photon loss and standard fusion gates.
arXiv Detail & Related papers (2024-06-24T14:44:23Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - High photon-loss threshold quantum computing using GHZ-state
measurements [0.0]
We propose fault-tolerant architectures based on performing projective measurements on constant-sized, entangled resource states.
We present linear-optical constructions of the architectures, where the GHZ-state measurements are encoded to suppress the errors induced by photon loss.
We believe this result shows a resource-efficient path to achieving photonic fault-tolerant quantum computing.
arXiv Detail & Related papers (2023-08-08T11:36:23Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Parity-encoding-based quantum computing with Bayesian error tracking [0.0]
Measurement-based quantum computing (MBQC) in linear optical systems is promising for near-future quantum computing architecture.
We propose a linear optical topological MBQC protocol employing multiphoton qubits based on the parity encoding.
We show that our protocol is advantageous over several other existing approaches in terms of fault-tolerance, resource overhead, or feasibility of basic elements.
arXiv Detail & Related papers (2022-07-14T10:32:05Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.