Benchmarking Embedded Chain Breaking in Quantum Annealing
- URL: http://arxiv.org/abs/2104.03258v1
- Date: Wed, 7 Apr 2021 17:05:57 GMT
- Title: Benchmarking Embedded Chain Breaking in Quantum Annealing
- Authors: Erica Grant, Travis Humble
- Abstract summary: The embedded Hamiltonian may violate the principles of adiabatic evolution and generate excitations that correspond to errors in the computed solution.
We empirically benchmark the probability of chain breaks and identify sweet spots for solving a suite of embedded Hamiltonians.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum annealing solves combinatorial optimization problems by finding the
energetic ground states of an embedded Hamiltonian. However, quantum annealing
dynamics under the embedded Hamiltonian may violate the principles of adiabatic
evolution and generate excitations that correspond to errors in the computed
solution. Here we empirically benchmark the probability of chain breaks and
identify sweet spots for solving a suite of embedded Hamiltonians. We further
correlate the physical location of chain breaks in the quantum annealing
hardware with the underlying embedding technique and use these localized rates
in a tailored post-processing strategies. Our results demonstrate how to use
characterization of the quantum annealing hardware to tune the embedded
Hamiltonian and remove computational errors.
Related papers
- Scalable embedding of parity constraints in quantum annealing hardware [0.0]
We present fixed, modular and scalable embeddings that can be used to embed any optimization problem described as an Ising Hamiltonian.
These embeddings are the result of an extension of the well-known parity mapping.
We show how our new embeddings can be mapped to existing quantum annealers and that the embedded Hamiltonian physical properties match the original Hamiltonian properties.
arXiv Detail & Related papers (2024-05-23T16:14:33Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - On The Study Of Partial Qubit Hamiltonian For Efficient Molecular
Simulation Using Variational Quantum Eigensolvers [0.0]
We present a new approach for extracting information from the partial qubit Hamiltonian of simple molecules to design more efficient variational quantum eigensolvers.
The results of this study have the potential to demonstrate the potential advancement in the field of quantum computing and its implementation in quantum chemistry.
arXiv Detail & Related papers (2023-08-24T03:25:05Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - A Hybrid Quantum-Classical Hamiltonian Learning Algorithm [6.90132007891849]
Hamiltonian learning is crucial to the certification of quantum devices and quantum simulators.
We propose a hybrid quantum-classical Hamiltonian learning algorithm to find the coefficients of the Pauli operator of the Hamiltonian.
arXiv Detail & Related papers (2021-03-01T15:15:58Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z) - K-spin Hamiltonian for quantum-resolvable Markov decision processes [0.0]
We derive a pseudo-Boolean cost function that is equivalent to a K-spin Hamiltonian representation of the discrete, finite, discounted Markov decision process.
This K-spin Hamiltonian furnishes a starting point from which to solve for an optimal policy using quantum algorithms.
arXiv Detail & Related papers (2020-04-13T16:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.