SI-Score: An image dataset for fine-grained analysis of robustness to
object location, rotation and size
- URL: http://arxiv.org/abs/2104.04191v1
- Date: Fri, 9 Apr 2021 05:00:49 GMT
- Title: SI-Score: An image dataset for fine-grained analysis of robustness to
object location, rotation and size
- Authors: Jessica Yung, Rob Romijnders, Alexander Kolesnikov, Lucas Beyer, Josip
Djolonga, Neil Houlsby, Sylvain Gelly, Mario Lucic, Xiaohua Zhai
- Abstract summary: Changing the object location, rotation and size may affect the predictions in non-trivial ways.
We perform a fine-grained analysis of robustness with respect to these factors of variation using SI-Score, a synthetic dataset.
- Score: 95.00667357120442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Before deploying machine learning models it is critical to assess their
robustness. In the context of deep neural networks for image understanding,
changing the object location, rotation and size may affect the predictions in
non-trivial ways. In this work we perform a fine-grained analysis of robustness
with respect to these factors of variation using SI-Score, a synthetic dataset.
In particular, we investigate ResNets, Vision Transformers and CLIP, and
identify interesting qualitative differences between these.
Related papers
- Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Object-based Probabilistic Similarity Evidence of Sparse Latent Features
from Fully Convolutional Networks [0.0]
Similarity analysis using neural networks has emerged as a powerful technique for understanding and categorizing complex patterns in various domains.
This research explores the utilization of latent information generated by fully convolutional networks (FCNs) in similarity analysis.
arXiv Detail & Related papers (2023-07-25T16:15:29Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
Scaling the raw images creates out-of-distribution data, which makes it a possible adversarial attack to fool the networks.
In this work, we propose a Scaling-distortion dataset ImageNet-CS by Scaling a subset of the ImageNet Challenge dataset by different multiples.
arXiv Detail & Related papers (2022-09-02T08:06:58Z) - Robustness and invariance properties of image classifiers [8.970032486260695]
Deep neural networks have achieved impressive results in many image classification tasks.
Deep networks are not robust to a large variety of semantic-preserving image modifications.
The poor robustness of image classifiers to small data distribution shifts raises serious concerns regarding their trustworthiness.
arXiv Detail & Related papers (2022-08-30T11:00:59Z) - A Comprehensive Study of Image Classification Model Sensitivity to
Foregrounds, Backgrounds, and Visual Attributes [58.633364000258645]
We call this dataset RIVAL10 consisting of roughly $26k$ instances over $10$ classes.
We evaluate the sensitivity of a broad set of models to noise corruptions in foregrounds, backgrounds and attributes.
In our analysis, we consider diverse state-of-the-art architectures (ResNets, Transformers) and training procedures (CLIP, SimCLR, DeiT, Adversarial Training)
arXiv Detail & Related papers (2022-01-26T06:31:28Z) - Contemplating real-world object classification [53.10151901863263]
We reanalyze the ObjectNet dataset recently proposed by Barbu et al. containing objects in daily life situations.
We find that applying deep models to the isolated objects, rather than the entire scene as is done in the original paper, results in around 20-30% performance improvement.
arXiv Detail & Related papers (2021-03-08T23:29:59Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module.
The image synthesis network is designed to efficiently span the pose configuration space.
We experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone.
arXiv Detail & Related papers (2020-08-18T20:30:47Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Roto-Translation Equivariant Convolutional Networks: Application to
Histopathology Image Analysis [11.568329857588099]
We propose a framework to encode the geometric structure of the special Euclidean motion group SE(2) in convolutional networks.
We show that consistent increase of performances can be achieved when using the proposed framework.
arXiv Detail & Related papers (2020-02-20T13:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.