Distributed Bayesian Online Learning for Cooperative Manipulation
- URL: http://arxiv.org/abs/2104.04342v1
- Date: Fri, 9 Apr 2021 13:03:09 GMT
- Title: Distributed Bayesian Online Learning for Cooperative Manipulation
- Authors: Pablo Budde gen. Dohmann, Armin Lederer, Marcel Di{\ss}emond, Sandra
Hirche
- Abstract summary: We propose a novel distributed learning framework for the exemplary task of cooperative manipulation using Bayesian principles.
Using only local state information each agent obtains an estimate of the object dynamics and grasp kinematics.
Each estimate of the object dynamics and grasp kinematics is accompanied by a measure of uncertainty, which allows to guarantee a bounded prediction error with high probability.
- Score: 9.582645137247667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For tasks where the dynamics of multiple agents are physically coupled, e.g.,
in cooperative manipulation, the coordination between the individual agents
becomes crucial, which requires exact knowledge of the interaction dynamics.
This problem is typically addressed using centralized estimators, which can
negatively impact the flexibility and robustness of the overall system. To
overcome this shortcoming, we propose a novel distributed learning framework
for the exemplary task of cooperative manipulation using Bayesian principles.
Using only local state information each agent obtains an estimate of the object
dynamics and grasp kinematics. These local estimates are combined using dynamic
average consensus. Due to the strong probabilistic foundation of the method,
each estimate of the object dynamics and grasp kinematics is accompanied by a
measure of uncertainty, which allows to guarantee a bounded prediction error
with high probability. Moreover, the Bayesian principles directly allow
iterative learning with constant complexity, such that the proposed learning
method can be used online in real-time applications. The effectiveness of the
approach is demonstrated in a simulated cooperative manipulation task.
Related papers
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
We propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL)
Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function.
We provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
arXiv Detail & Related papers (2024-03-18T14:51:19Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - Deep Unfolding-based Weighted Averaging for Federated Learning in
Heterogeneous Environments [11.023081396326507]
Federated learning is a collaborative model training method that iterates model updates by multiple clients and aggregation of the updates by a central server.
To adjust the aggregation weights, this paper employs deep unfolding, which is known as the parameter tuning method.
The proposed method can handle large-scale learning models with the aid of pretrained models such as it can perform practical real-world tasks.
arXiv Detail & Related papers (2022-12-23T08:20:37Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
We tackle the problem of verifying probabilistic policies for deep reinforcement learning.
We propose an abstraction approach, based on interval Markov decision processes, that yields guarantees on a policy's execution.
We present techniques to build and solve these models using abstract interpretation, mixed-integer linear programming, entropy-based refinement and probabilistic model checking.
arXiv Detail & Related papers (2022-01-10T23:55:04Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Robust Unsupervised Learning of Temporal Dynamic Interactions [21.928675010305543]
In this paper we introduce a model-free metric based on the Procrustes distance for robust representation learning of interactions.
We also introduce an optimal transport based distance metric for comparing between distributions of interaction primitives.
Their usefulness will be demonstrated in unsupervised learning of vehicle-to-vechicle interactions extracted from the Safety Pilot database.
arXiv Detail & Related papers (2020-06-18T02:39:45Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Contextual Policy Transfer in Reinforcement Learning Domains via Deep
Mixtures-of-Experts [24.489002406693128]
We introduce a novel mixture-of-experts formulation for learning state-dependent beliefs over source task dynamics.
We show how this model can be incorporated into standard policy reuse frameworks.
arXiv Detail & Related papers (2020-02-29T07:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.