Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics
- URL: http://arxiv.org/abs/2104.04391v3
- Date: Mon, 4 Sep 2023 19:54:59 GMT
- Title: Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics
- Authors: Mohsen Zand, Ali Etemad, and Michael Greenspan
- Abstract summary: Conditional Flows (CNFs) are flexible generative models capable of representing complicated distributions with high dimensionality and interdimensional correlations.
We propose MotionFlow as a novel approach that autoregressively normalizes the output on the temporal input features.
We apply our method to different tasks, including prediction, motion prediction time series forecasting, and binary segmentation.
- Score: 21.24885597341643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional Normalizing Flows (CNFs) are flexible generative models capable
of representing complicated distributions with high dimensionality and large
interdimensional correlations, making them appealing for structured output
learning. Their effectiveness in modelling multivariates spatio-temporal
structured data has yet to be completely investigated. We propose MotionFlow as
a novel normalizing flows approach that autoregressively conditions the output
distributions on the spatio-temporal input features. It combines deterministic
and stochastic representations with CNFs to create a probabilistic neural
generative approach that can model the variability seen in high dimensional
structured spatio-temporal data. We specifically propose to use conditional
priors to factorize the latent space for the time dependent modeling. We also
exploit the use of masked convolutions as autoregressive conditionals in CNFs.
As a result, our method is able to define arbitrarily expressive output
probability distributions under temporal dynamics in multivariate prediction
tasks. We apply our method to different tasks, including trajectory prediction,
motion prediction, time series forecasting, and binary segmentation, and
demonstrate that our model is able to leverage normalizing flows to learn
complicated time dependent conditional distributions.
Related papers
- Recurrent Interpolants for Probabilistic Time Series Prediction [10.422645245061899]
Sequential models like recurrent neural networks and transformers have become standard for probabilistic time series forecasting.
Recent work explores generative approaches using diffusion or flow-based models, extending to time series imputation and forecasting.
This work proposes a novel method combining recurrent neural networks' efficiency with diffusion models' probabilistic modeling, based on interpolants and conditional generation with control features.
arXiv Detail & Related papers (2024-09-18T03:52:48Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes [18.344934424278048]
We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling.
We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a F"ollmer process.
arXiv Detail & Related papers (2024-03-20T16:33:06Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
This paper proposes a novel sparse infinite-order VAR model for high-dimensional time series.
The temporal and cross-sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately.
Greater statistical efficiency and interpretability can be achieved with little loss of temporal information.
arXiv Detail & Related papers (2022-09-02T17:14:24Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
We propose a novel type of flow driven by a differential deformation of the Wiener process.
As a result, we obtain a rich time series model whose observable process inherits many of the appealing properties of its base process.
arXiv Detail & Related papers (2020-02-24T20:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.