Exponential decay of mutual information for Gibbs states of local
Hamiltonians
- URL: http://arxiv.org/abs/2104.04419v2
- Date: Tue, 8 Feb 2022 18:34:01 GMT
- Title: Exponential decay of mutual information for Gibbs states of local
Hamiltonians
- Authors: Andreas Bluhm, \'Angela Capel, Antonio P\'erez-Hern\'andez
- Abstract summary: We consider 1D quantum spin systems with local, finite-range, translation-invariant interactions at any temperature.
We show that Gibbs states satisfy uniform exponential decay of correlations and, moreover, the mutual information between two regions decays exponentially with their distance.
We find that the Gibbs states of the systems we consider are superexponentially close to saturating the data-processing inequality for the Belavkin-Staszewski relative entropy.
- Score: 0.7646713951724009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The thermal equilibrium properties of physical systems can be described using
Gibbs states. It is therefore of great interest to know when such states allow
for an easy description. In particular, this is the case if correlations
between distant regions are small. In this work, we consider 1D quantum spin
systems with local, finite-range, translation-invariant interactions at any
temperature. In this setting, we show that Gibbs states satisfy uniform
exponential decay of correlations and, moreover, the mutual information between
two regions decays exponentially with their distance, irrespective of the
temperature. In order to prove the latter, we show that exponential decay of
correlations of the infinite-chain thermal states, exponential uniform
clustering and exponential decay of the mutual information are equivalent for
1D quantum spin systems with local, finite-range interactions at any
temperature. In particular, Araki's seminal results yields that the three
conditions hold in the translation-invariant case. The methods we use are based
on the Belavkin-Staszewski relative entropy and on techniques developed by
Araki. Moreover, we find that the Gibbs states of the systems we consider are
superexponentially close to saturating the data-processing inequality for the
Belavkin-Staszewski relative entropy.
Related papers
- Equilibrium and nonequilibrium steady states with the repeated interaction protocol: Relaxation dynamics and energetic cost [44.99833362998488]
We study the dynamics of a qubit system interacting with thermalized bath-ancilla spins via a repeated interaction scheme.
Our key finding is that deterministic system-ancilla interactions do not typically result in the system thermalizing to the thermal state of the ancilla.
arXiv Detail & Related papers (2025-01-09T17:35:36Z) - Thermalization in Trapped Bosonic Systems With Disorder [3.1457219084519004]
We study experimentally accessible states in a system of bosonic atoms trapped in an open linear chain with disorder.
We find that, within certain tolerances, most states in the chaotic region thermalize.
However, states with low participation ratios in the energy eigenstate basis show greater deviations from thermal equilibrium values.
arXiv Detail & Related papers (2024-07-05T19:00:02Z) - Quantum concentration inequalities and equivalence of the thermodynamical ensembles: an optimal mass transport approach [4.604003661048267]
We prove new concentration inequalities for quantum spin systems.
Our results do not require the spins to be arranged in a regular lattice.
We introduce a local W1 distance, which quantifies the distinguishability of two states with respect to local observables.
arXiv Detail & Related papers (2024-03-27T14:32:03Z) - Conditional Independence of 1D Gibbs States with Applications to Efficient Learning [0.0]
We show that spin chains in thermal equilibrium have a correlation structure in which individual regions are strongly correlated at most with their near vicinity.
We prove that these measures decay superexponentially at every positive temperature.
arXiv Detail & Related papers (2024-02-28T17:28:01Z) - The topology of data hides in quantum thermal states [16.34646723046073]
We provide a quantum protocol to perform topological data analysis (TDA) via the distillation of quantum thermal states.
To leverage quantum thermal state preparation algorithms, we translate quantum TDA from a real-time to an imaginary-time picture.
arXiv Detail & Related papers (2024-02-23T22:34:26Z) - Strong decay of correlations for Gibbs states in any dimension [0.0]
Quantum systems in thermal equilibrium are described using Gibbs states.
We show that if the Gibbs state of a quantum system satisfies that each of its marginals admits a local effective Hamiltonian, then it satisfies a mixing condition.
arXiv Detail & Related papers (2024-01-18T17:20:29Z) - From decay of correlations to locality and stability of the Gibbs state [0.27309692684728604]
We show that whenever a Gibbs state satisfies decay of correlations, then it is stable, in the sense that local perturbations influence the Gibbs state only locally.
These implications hold true in any dimension, only require locality of the Hamiltonian and rely on Lieb-Robinson bounds.
arXiv Detail & Related papers (2023-10-13T15:20:58Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Improved thermal area law and quasi-linear time algorithm for quantum
Gibbs states [14.567067583556714]
We propose a new thermal area law that holds for generic many-body systems on lattices.
We improve the temperature dependence from the original $mathcalO(beta)$ to $tildemathcalO(beta2/3)$.
We also prove analogous bounds for the R'enyi entanglement of purification and the entanglement of formation.
arXiv Detail & Related papers (2020-07-22T02:55:27Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.