Two layer Ensemble of Deep Learning Models for Medical Image
Segmentation
- URL: http://arxiv.org/abs/2104.04809v1
- Date: Sat, 10 Apr 2021 16:52:34 GMT
- Title: Two layer Ensemble of Deep Learning Models for Medical Image
Segmentation
- Authors: Truong Dang, Tien Thanh Nguyen, John McCall, Eyad Elyan, Carlos
Francisco Moreno-Garc\'ia
- Abstract summary: We propose a two-layer ensemble of deep learning models for the segmentation of medical images.
The prediction for each training image pixel made by each model in the first layer is used as the augmented data of the training image.
The prediction of the second layer is then combined by using a weights-based scheme in which each model contributes differently to the combined result.
- Score: 0.2699900017799093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep learning has rapidly become a method of choice for the
segmentation of medical images. Deep Neural Network (DNN) architectures such as
UNet have achieved state-of-the-art results on many medical datasets. To
further improve the performance in the segmentation task, we develop an
ensemble system which combines various deep learning architectures. We propose
a two-layer ensemble of deep learning models for the segmentation of medical
images. The prediction for each training image pixel made by each model in the
first layer is used as the augmented data of the training image for the second
layer of the ensemble. The prediction of the second layer is then combined by
using a weights-based scheme in which each model contributes differently to the
combined result. The weights are found by solving linear regression problems.
Experiments conducted on two popular medical datasets namely CAMUS and
Kvasir-SEG show that the proposed method achieves better results concerning two
performance metrics (Dice Coefficient and Hausdorff distance) compared to some
well-known benchmark algorithms.
Related papers
- Diagonal Hierarchical Consistency Learning for Semi-supervised Medical Image Segmentation [0.0]
We propose a novel framework for robust semi-supervised medical image segmentation using diagonal hierarchical consistency learning (DiHC-Net)
It is composed of multiple sub-models with identical multi-scale architecture but with distinct sub-layers, such as up-sampling and normalisation layers.
A series of experiments verifies the efficacy of our simple framework, outperforming all previous approaches on public benchmark dataset covering organ and tumour.
arXiv Detail & Related papers (2023-11-10T12:38:16Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z) - Dual Convolutional Neural Networks for Breast Mass Segmentation and
Diagnosis in Mammography [18.979126709943085]
We introduce a novel deep learning framework for mammogram image processing, which computes mass segmentation and simultaneously predict diagnosis results.
Our method is constructed in a dual-path architecture that solves the mapping in a dual-problem manner.
Experimental results show that DualCoreNet achieves the best mammography segmentation and classification simultaneously, outperforming recent state-of-the-art models.
arXiv Detail & Related papers (2020-08-07T02:23:36Z) - Predicting Scores of Medical Imaging Segmentation Methods with
Meta-Learning [0.30458514384586394]
We investigate meta-learning for segmentation across ten datasets of different organs and modalities.
We use support vector regression and deep neural networks to learn the relationship between the meta-features and prior model performance.
These results demonstrate the potential of meta-learning in medical imaging.
arXiv Detail & Related papers (2020-05-08T07:47:52Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.