Survey on reinforcement learning for language processing
- URL: http://arxiv.org/abs/2104.05565v1
- Date: Mon, 12 Apr 2021 15:33:11 GMT
- Title: Survey on reinforcement learning for language processing
- Authors: Victor Uc-Cetina, Nicolas Navarro-Guerrero, Anabel Martin-Gonzalez,
Cornelius Weber, Stefan Wermter
- Abstract summary: This paper reviews the state of the art of reinforcement learning methods for different problems of natural language processing.
We provide detailed descriptions of the problems as well as discussions of why RL is well-suited to solve them.
We elaborate on promising research directions in natural language processing that might benefit from reinforcement learning.
- Score: 17.738843098424816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years some researchers have explored the use of reinforcement
learning (RL) algorithms as key components in the solution of various natural
language processing tasks. For instance, some of these algorithms leveraging
deep neural learning have found their way into conversational systems. This
paper reviews the state of the art of RL methods for their possible use for
different problems of natural language processing, focusing primarily on
conversational systems, mainly due to their growing relevance. We provide
detailed descriptions of the problems as well as discussions of why RL is
well-suited to solve them. Also, we analyze the advantages and limitations of
these methods. Finally, we elaborate on promising research directions in
natural language processing that might benefit from reinforcement learning.
Related papers
- Reinforcement Learning Problem Solving with Large Language Models [0.0]
Large Language Models (LLMs) have an extensive amount of world knowledge, and this has enabled their application in various domains to improve the performance of Natural Language Processing (NLP) tasks.
This has also facilitated a more accessible paradigm of conversation-based interactions between humans and AI systems to solve intended problems.
We show the practicality of our approach through two detailed case studies for "Research Scientist" and "Legal Matter Intake"
arXiv Detail & Related papers (2024-04-29T12:16:08Z) - Language Evolution with Deep Learning [49.879239655532324]
Computational modeling plays an essential role in the study of language emergence.
It aims to simulate the conditions and learning processes that could trigger the emergence of a structured language.
This chapter explores another class of computational models that have recently revolutionized the field of machine learning: deep learning models.
arXiv Detail & Related papers (2024-03-18T16:52:54Z) - Deep Learning Approaches for Improving Question Answering Systems in
Hepatocellular Carcinoma Research [0.0]
In recent years, advancements in natural language processing (NLP) have been fueled by deep learning techniques.
BERT and GPT-3, trained on vast amounts of data, have revolutionized language understanding and generation.
This paper delves into the current landscape and future prospects of large-scale model-based NLP.
arXiv Detail & Related papers (2024-02-25T09:32:17Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
We study the biases of large language models (LLMs) in relation to those known in children when solving arithmetic word problems.
We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features.
arXiv Detail & Related papers (2024-01-31T18:48:20Z) - A Review of Reinforcement Learning for Natural Language Processing, and
Applications in Healthcare [17.38031305999901]
Reinforcement learning (RL) has emerged as a powerful approach for tackling complex medical decision-making problems.
This paper presents a review of the RL techniques in NLP, highlighting key advancements, challenges, and applications in healthcare.
We examined dialogue systems where RL enables the learning of conversational strategies, RL-based machine translation models, question-answering systems, text summarization, and information extraction.
arXiv Detail & Related papers (2023-10-23T20:26:15Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
Large language models (LLMs) have achieved state-of-the-art performance on a series of natural language understanding tasks.
They might rely on dataset bias and artifacts as shortcuts for prediction.
This has significantly affected their generalizability and adversarial robustness.
arXiv Detail & Related papers (2022-08-25T03:51:39Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
Deep learning has been the mainstream technique in natural language processing (NLP) area.
Deep learning requires many labeled data and is less generalizable across domains.
Meta-learning is an arising field in machine learning studying approaches to learn better algorithms.
arXiv Detail & Related papers (2022-05-03T13:58:38Z) - Federated Learning Meets Natural Language Processing: A Survey [12.224792145700562]
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy.
Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models.
arXiv Detail & Related papers (2021-07-27T05:07:48Z) - A Review of Uncertainty Quantification in Deep Learning: Techniques,
Applications and Challenges [76.20963684020145]
Uncertainty quantification (UQ) plays a pivotal role in reduction of uncertainties during both optimization and decision making processes.
Bizarre approximation and ensemble learning techniques are two most widely-used UQ methods in the literature.
This study reviews recent advances in UQ methods used in deep learning and investigates the application of these methods in reinforcement learning.
arXiv Detail & Related papers (2020-11-12T06:41:05Z) - Natural Language Processing Advancements By Deep Learning: A Survey [0.755972004983746]
This survey categorizes and addresses the different aspects and applications of NLP that have benefited from deep learning.
It covers core NLP tasks and applications and describes how deep learning methods and models advance these areas.
arXiv Detail & Related papers (2020-03-02T21:32:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.